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Da Energia aos Algoritmos: 200 Anos de Matemática em 

uma Jornada até a Computação Quântica  

Um curso imersivo sobre como estruturas hamiltonianas, 

álgebra linear e teorias da complexidade moldam os sistemas 

físicos que hoje processam informação — e os algoritmos que 

podem transformar o futuro da computação 

Sobre o Autor 

Marcos Eduardo Elias é matemático, engenheiro, empresário e pesquisador multidisciplinar com 

atuação destacada nas fronteiras entre finanças, ciência de dados, física matemática e 

computação quântica. Formado em Engenharia Mecatrônica pela POLI-USP, é doutor em 

Matemática pela Universidade Estatal de São Petersburgo, com foco em análise real, complexa e 

funcional. Complementou sua formação com mestrado em Direito pela FGV-SP e MBA pela 

Universidade de Pittsburgh, nos Estados Unidos. 

Ao longo de mais de duas décadas, Marcos Elias fundou e liderou diversas instituições 

financeiras e tecnológicas de vanguarda. Foi o criador da GAS Investimentos (posteriormente 

incorporada pela Vinci Partners), da Empiricus, da Turing (pioneira em high-frequency trading 

com inteligência artificial no Brasil), da Modena Capital e da Actus. Também atuou como sócio 

da Link Corretora, onde inovou ao introduzir relatórios de análise direta e comparações 

internacionais de ações brasileiras — abordagem que se tornaria padrão no mercado. 

Sua trajetória acadêmica inclui passagens como professor no Ibmec, Insper e FGV-SP, onde 

lecionou entre 1997 e 2006. Em paralelo à carreira empresarial, Marcos tem se dedicado à 

pesquisa e à formação de talentos por meio do Ramanujan Institute, centro de excelência voltado 

à matemática pura, física teórica e computação de fronteira. O instituto promove uma abordagem 

transdisciplinar, reunindo pesquisadores de diversas áreas para investigar estruturas 

fundamentais da realidade computável. 

Nos últimos anos, sua atuação tem se expandido para o campo da computação quântica e da 

Web3. É fundador da HoloSystems Quantum, empresa dedicada ao desenvolvimento de 

algoritmos quânticos aplicados à otimização, simulação de materiais e finanças estruturadas. 
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Também lidera a Equiverse, plataforma que integra inteligência artificial, blockchain e sistemas 

complexos para aplicações em ciência de dados e governança algorítmica. 

Em 2025, lançou o token ITO por meio da plataforma Kiyosito, um ecossistema descentralizado 

que une notificações de trade em tempo real com financiamento de startups baseado em 

performance. A proposta do ITO é redefinir a relação entre investidores e empreendedores, 

utilizando contratos inteligentes e princípios de finanças descentralizadas para criar um modelo 

sustentável, transparente e meritocrático de alocação de capital. 

Marcos Elias é reconhecido por sua capacidade de transitar entre teoria e prática, combinando 

rigor matemático com visão estratégica e espírito empreendedor. Seu trabalho reflete um 

compromisso contínuo com a inovação estrutural — seja na modelagem de algoritmos inspirados 

em Hamiltonianas, na criação de mercados descentralizados ou na formação de uma nova 

geração de pensadores capazes de operar nas fronteiras entre matemática, física e computação. 

INTRODUÇÃO: 

Seja bem-vindo a um curso desenhado não apenas para transmitir técnicas, mas para provocar 

uma transformação na forma como compreendemos os fundamentos da computação, da física e 

da matemática — e como essas áreas se entrelaçam para formar o alicerce de uma nova era 

tecnológica. 

“Da Energia aos Algoritmos: 200 Anos de Matemática em uma Jornada até a Computação 

Quântica” é uma travessia conceitual pela espinha dorsal da ciência: dos princípios variacionais 

clássicos às arquiteturas algorítmicas do século XXI. Aqui, não estudaremos a computação 

quântica como uma coleção de portas lógicas ou curiosidades tecnológicas: estudaremos 

sistemas físicos como algoritmos naturais, e algoritmos como extensões da estrutura energética 

da realidade. 

Ao longo de 360 horas, nosso percurso será guiado pela ideia de que compreender um 

Hamiltoniano é compreender não apenas a dinâmica de um sistema físico, mas também a 

estrutura computacional de problemas complexos — desde otimizações clássicas até heurísticas 

inspiradas em tunelamento quântico. Exploraremos por que álgebra linear é a verdadeira 

linguagem operacional da natureza, como teoria da complexidade molda os limites 

computacionais do mundo físico, e como redes neurais e variações contínuas podem simular 

estados quânticos em máquinas clássicas com surpreendente eficiência. 
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Este não é um curso sobre o futuro — é um curso sobre o presente que já nasceu com os traços 

do futuro. Uma formação para mentes que não apenas querem dominar tecnologias emergentes, 

mas compreendê-las em sua profundidade estrutural. Esperamos, aqui, não apenas formar 

especialistas, mas formar exploradores da fronteira matemática da realidade computável. 

OS PROTAGONISTAS DA COMPUTAÇÃO QUÂNTICA ALGORÍTMICA 

Richard P. Feynman 

Físico americano e ganhador do Nobel, Feynman foi o primeiro a sugerir explicitamente que 

certos sistemas físicos — como moléculas complexas — não poderiam ser simulados de forma 

eficiente por computadores clássicos, e que uma nova máquina, baseada em princípios quânticos, 

seria necessária. Em sua icônica palestra de 1981 no MIT, afirmou: "Nature isn’t classical, damn 

it, and if you want to make a simulation of nature, you'd better make it quantum mechanical." 

Isso deu origem à ideia de computação quântica como modelo físico, não apenas lógico. 

Feynman não criou algoritmos, mas mudou o paradigma: do computar como abstração para o 

computar como fenômeno. 

David Deutsch 

Matemático e físico teórico de Oxford, Deutsch publicou em 1985 o artigo que define o modelo 

do computador quântico universal de portas. Ao introduzir o conceito de Turing universal no 

domínio quântico, ele estabeleceu as bases formais para algoritmos sobre superposições. Foi 

também pioneiro em argumentar, do ponto de vista da epistemologia científica (e não apenas da 

física computacional), que o conhecimento do universo requer modelos computacionais 

coerentes com a mecânica quântica. Deutsch é também o criador do algoritmo quântico para 

teste de paridade (Deutsch-Jozsa) — um dos primeiros a mostrar separação entre classes P e 

BQP para casos oraculares. 

Peter Shor 

Matemático do MIT, Shor entrou para a história ao apresentar, em 1994, um algoritmo quântico 

eficiente para fatorar inteiros em tempo polinomial, quebrando o sistema RSA. Isso transformou 

a computação quântica de curiosidade acadêmica em ameaça prática à criptografia moderna. 

Além disso, Shor foi pioneiro em sistemas de correção de erro quântico, desenvolvendo o 

primeiro código que protege qubits contra ruídos locais. Seus trabalhos impulsionaram 
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experimentos reais, investimentos institucionais e estratégias de tolerância a falhas em 

arquiteturas quânticas. 

Lov Grover 

Cientista da Bell Labs, Grover criou em 1996 o algoritmo de busca não estruturada com 

aceleração quântica quadrática, permitindo encontrar um item em uma lista de N elementos com 

apenas √N consultas. Seu algoritmo se tornou uma sub-rotina fundamental para outras estruturas 

— como otimização e amplitude amplification. Grover também discutiu os limites de aceleração 

em algoritmos sem estrutura algébrica e influenciou profundamente a formulação de algoritmos 

heurísticos e aproximados em ambientes NISQ (Noisy Intermediate-Scale Quantum). 

Charles H. Bennett 

Pesquisador da IBM Research, Bennett é um dos fundadores da informação quântica moderna. 

Com Gilles Brassard, criou o protocolo BB84 de criptografia quântica, e com colegas 

demonstrou o fenômeno de teletransporte quântico em 1993. Suas contribuições foram 

fundamentais para a noção de entropia quântica, irreversibilidade computacional e computação 

reversível — hoje pilar de circuitos eficientes em física da informação. Bennett é também um 

dos principais pensadores sobre as fronteiras entre física e teoria da informação. 

Emanuel Knill & Raymond Laflamme 

Knill e Laflamme, do Los Alamos National Laboratory, co-propuseram o modelo de computação 

DQC1 (Deterministic Quantum Computation with one qubit), mostrando que mesmo com 

mínima coerência quântica, certos traços de operadores podem ser estimados com vantagens 

computacionais. Seus trabalhos questionaram o papel do emaranhamento como único recurso 

computacional e abriram portas para arquiteturas híbridas com baixa profundidade. Também 

contribuíram decisivamente em códigos de correção de erros e na teoria de sistemas quânticos 

ruidosos. 

Aram W. Harrow, Avinatan Hassidim & Seth Lloyd (HHL) 

Trio responsável pelo algoritmo HHL, publicado em 2009, que propõe a solução de sistemas 

lineares de equações do tipo Ax = b usando circuitos quânticos com complexidade logarítmica 

em N. Isso representou um divisor de águas na álgebra linear quântica, com impacto em 

aprendizado de máquina, análise espectral e simulações químicas. Apesar de requisitos fortes 



 
 

Dr. Marcos Elias Matemático, engenheiro, pesquisador e empreendedor Fundador do Ramanujan Institute, HoloSystems 

Quantum, Equiverse e Kiyosito Av. Brigadeiro Faria Lima, 2277 – 4º andar Jardim Paulistano – São Paulo – SP – CEP 01489-

901 Brasil 

www.ramanujan.institute | www.holosystemsquantum.com | www.equiverse.com.br | www.kiyosito.io 

5 
 

(condicionamento e acesso oracular), o HHL desencadeou uma linha de pesquisa sobre block-

encoding, qubitization e simulação eficiente de Hamiltonianas. 

Scott Aaronson 

Teórico da complexidade computacional e professor da UT Austin, Aaronson é um dos maiores 

divulgadores e inovadores em fundamentos da computação quântica. Contribuiu para limites da 

classe BQP, para modelos como postBQP e para argumentos sobre separações entre universos 

computacionais. Seu trabalho sobre boson sampling, random oracle separations e shadow 

tomography moldou o campo da verificação de processos quânticos. Aaronson também é 

responsável por trazer precisão conceitual ao debate público sobre o poder real dos 

computadores quânticos. 

Thomas Vidick & Umesh Vazirani 

Vidick (Caltech) e Vazirani (UC Berkeley) lideraram a integração entre teoria de jogos 

quânticos, verificação interativa e complexidade algorítmica. Com colaboradores, provaram 

o famoso resultado MIP* = RE, revelando que verificadores quânticos podem resolver 

problemas tão difíceis quanto os problemas recursivamente enumeráveis. Isso conecta mecânica 

quântica com limites computacionais da matemática de Gödel. Vazirani também é um dos 

fundadores teóricos do modelo de circuitos quânticos e coautor do algoritmo Deutsch-Jozsa. 

Mario Szegedy 

Teórico da computação e criador de algoritmos baseados em quantum walks (caminhadas 

quânticas), Szegedy generalizou estruturas probabilísticas para o domínio unitário. Suas técnicas 

permitem resolver problemas de busca, conectividade e marcação em grafos com aceleração 

quadrática. Introduziu métodos espectrais para avaliar o comportamento de operadores de 

transição quântica — aplicáveis em diversas áreas, da química à biologia computacional. 

Ashley Montanaro 

Professor da Universidade de Bristol, Montanaro é especialista em algoritmos quânticos para 

problemas clássicos como SAT, otimização convexa e aprendizado supervisionado. Demonstrou 

separações entre algoritmos clássicos e quânticos via lower bounds e compôs arquiteturas 

eficientes para tarefas como amostragem e compressão de dados. Seu trabalho recente envolve 
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métodos robustos e tolerantes a ruído — úteis para algoritmos em hardware ruidoso com 

circuitos de baixa profundidade. 

Kristan Temme & Jarrod McClean 

Pesquisadores da IBM (Temme) e da Google Quantum AI (McClean), ambos são protagonistas 

da era dos algoritmos variacionais. McClean liderou o estudo de barren plateaus (regiões de 

gradiente quase nulo no espaço de parâmetros), enquanto Temme propôs métodos de mitigação 

de erro e inferência clássica assistida. Juntos, seus trabalhos consolidaram a abordagem VQE 

como rota viável para extração de estados fundamentais de Hamiltonianas reais, mesmo com 

hardwares imperfeitos. 

Guglielmo Mazzola & Giuseppe Carleo 

Líderes na interseção entre aprendizado profundo e mecânica quântica. Em 2017, Carleo e 

Troyer propuseram o uso de Redes de Boltzmann Restritas (RBM) para representar funções de 

onda — criando as Neural Quantum States. Mazzola complementou com abordagens para 

simulação térmica e otimização baseada em aprendizado não supervisionado. Juntos, mostraram 

que redes neurais profundas podem capturar coerência, emaranhamento e transições de fase em 

sistemas quânticos fortemente correlacionados. 

Yuan Su, Dominic Berry & Nathan Wiebe 

Trio responsável por avanços teóricos em simulação de Hamiltonianas com precisão quântica. 

Introduziram técnicas como qubitização, block-encoding e quantum singular value 

transformation, permitindo simulações de evolução temporal com complexidade quase ótima. 

Esses métodos permitiram acelerar algoritmos de química quântica, decomposição espectral e 

aprendizado linear. Essas inovações estruturaram algoritmos com compressão subespacial 
e técnicas de amplificação espectral robustas, otimizando operações fundamentais como 
decomposição singular, regressão e simulação de evolução temporal. 

Daniel Gottesman 

Matemático e físico do Perimeter Institute, Gottesman é referência absoluta em correção de 

erros quânticos. Desenvolveu o formalismo estabilizador, que permite representar e manipular 

códigos quânticos complexos em estruturas algebraicamente eficientes. Foi um dos primeiros a 

mostrar como qubits físicos ruidosos podem ser protegidos por códigos de redundância em 
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espaços de Hilbert. Seus trabalhos pavimentaram o caminho para a computação quântica 

tolerante a falhas. 

Barbara Terhal 

Professora da RWTH Aachen, Terhal é reconhecida por seu trabalho em verificação de 

processos quânticos, códigos topológicos e simulação de materiais fortemente 

correlacionados. Contribuiu para métodos de certificação de saídas quânticas e para o uso de 

modelos como o código de superfície (surface code), hoje padrão em protótipos de correção de 

erros. Seu trabalho é essencial para arquiteturas escaláveis e análise realista de fidelidade em 

máquinas quânticas atuais. 

Alan Aspuru-Guzik 

Químico teórico e pesquisador multidisciplinar da Universidade de Toronto, Aspuru-Guzik foi 

um dos primeiros a aplicar algoritmos quânticos como VQE à simulação de moléculas, 

viabilizando aplicações em química quântica e design de materiais. Lidera iniciativas em 

aprendizado quântico e inteligência artificial aplicada a descoberta de fármacos. Seu grupo 

fundou empresas como Zapata Computing, que criam bibliotecas de algoritmos para sistemas 

híbridos quântico-clássicos. 

O que são algoritmos "quantum-inspired"? Eles são algoritmos clássicos que se 
aproveitam de princípios matemáticos, heurísticas ou estruturas inspiradas na mecânica 
quântica (como superposição, interferência e tunelamento), mas executados em 
hardware tradicional, não em qubits. 

Exemplos de aplicações já em uso: 

• Portfolio Optimization (finanças): empresas como Microsoft, Goldman Sachs e JP 

Morgan já usam algoritmos quantum-inspired para resolver problemas complexos de 

alocação de ativos, com resultados competitivos em relação a técnicas clássicas como 

gradient descent ou métodos estocásticos. 

• Logística e cadeias de suprimento: o Microsoft Quantum Team desenvolveu algoritmos 

de otimização (como QIO — Quantum-Inspired Optimization) aplicados a roteirização de 

entregas, sequenciamento de produção e problemas do tipo vehicle routing com enormes 

espaços combinatórios. 
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• Design molecular e farmacêutico: simulações de estruturas moleculares ou docking 

protein-ligand estão começando a usar modelos inspirados em annealing quântico para 

escapar de mínimos locais em superfícies de energia potencial. 

• Machine Learning: técnicas como quantum-inspired tensor networks estão sendo 

exploradas para compressão e generalização de modelos em deep learning — útil para 

edge computing e IA embarcada. 

O ponto chave: esses algoritmos não exigem hardware quântico, mas trazem benefícios como 

redução da dimensionalidade de busca, escape mais eficiente de mínimos locais e exploração de 

soluções globais — tudo inspirado em fenômenos quânticos. 

A DENSO, gigante japonesa de tecnologia automotiva, aplicou algoritmos quantum-inspired 

para resolver problemas complexos de roteirização e logística em suas operações. O sistema 

desenvolvido, chamado Mk-D, foi usado para otimizar rotas de entrega e alocação de recursos 

em tempo real. 

Resultados reportados: 

• Redução de tempo de processamento: de 30 minutos para menos de 1 minuto em 

certos cenários de roteirização com múltiplas restrições. 

• Impacto adicional: redução significativa de horas de trabalho humano e emissões de 

CO₂, graças à eficiência computacional e operacional. 

O algoritmo usado simula o comportamento de sistemas quânticos (como quantum annealing) 

em hardware clássico, permitindo explorar rapidamente grandes espaços combinatórios — algo 

que algoritmos tradicionais de busca ou heurísticas genéricas demorariam muito mais para 

resolver. 

Agendamento de robôs de transporte em laboratório automatizado (TRSP) 

Um estudo publicado em Scientific Reports comparou três abordagens para resolver o problema 

de agendamento de robôs de transporte em um laboratório de alto rendimento: 

• Fujitsu Digital Annealer (quantum-inspired) 

• D-Wave Leap Hybrid (quantum-classical) 

• Gurobi Solver (clássico, referência de mercado) 

Resultados observados: 
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• O Digital Annealer da Fujitsu foi capaz de encontrar soluções de qualidade comparável 

ou superior ao Gurobi, mas com redução de tempo de execução de até 80% em certos 

cenários. 

• Em instâncias com alta complexidade combinatória, o tempo caiu de vários minutos 

para menos de 30 segundos, mantendo a qualidade da solução. 

Esse problema é NP-difícil e envolve múltiplas restrições temporais e espaciais — ideal para 

testar limites de otimização. O uso do Digital Annealer permitiu explorar rapidamente o espaço 

de soluções sem depender de heurísticas tradicionais. 

Otimização de redes neurais profundas com técnicas quantum-inspired 

Um estudo publicado na revista Quantum Machine Intelligence (2024) investigou o uso de 

técnicas de otimização inspiradas em quântica combinadas com algoritmos de enxame 

(swarm intelligence) para treinar redes neurais profundas em três conjuntos de dados distintos. 

Resultados observados: 

• Redução no tempo de treinamento de até 27% em relação a métodos clássicos como 

Adam e SGD. 

• Melhoria na acurácia e convergência mais estável, especialmente em datasets com alta 

dimensionalidade e ruído. 

• Técnicas como Quantum-inspired Particle Swarm Optimization e Quantum-inspired 

Grey Wolf Optimizer foram aplicadas com sucesso. 

Essas abordagens simulam efeitos como superposição e tunelamento para escapar de mínimos 

locais durante o treinamento, algo que redes neurais profundas frequentemente enfrentam. 

Esse tipo de aplicação é particularmente promissor para edge AI, onde o tempo de treinamento e 

a eficiência energética são críticos. 

Eis aqui  cinco companhias que estão na vanguarda global do desenvolvimento de algoritmos e 

soluções quantum-inspired — ou seja, que aplicam princípios da mecânica quântica em sistemas 

clássicos com impacto real: 

1. Fujitsu 
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• Destaque: Desenvolveu o Digital Annealer, um processador especializado que simula o 

comportamento de sistemas quânticos para resolver problemas combinatórios complexos. 

• Aplicações: Logística, finanças, bioinformática. 

• Impacto: Usado por empresas como DENSO e BMW para otimização em tempo real. 

2. Microsoft 

• Destaque: Criadora do Azure Quantum, que inclui uma suíte de algoritmos quantum-

inspired para otimização (QIO). 

• Aplicações: Portfolio optimization, roteirização, supply chain. 

• Impacto: Parcerias com empresas como Repsol e Toyota para resolver problemas 

industriais com ganhos de performance mensuráveis. 

3. Multiverse Computing 

• Destaque: Startup espanhola que desenvolveu o CompactifAI, uma tecnologia de 

compressão de modelos de IA inspirada em redes tensoriais quânticas. 

• Aplicações: Compressão de LLMs, finanças, energia, defesa. 

• Impacto: Redução de até 95% no tamanho de modelos com até 80% de economia de 

custo de inferência. 

4. NEC Corporation 

• Destaque: Desenvolveu o Vector Annealing, uma abordagem quantum-inspired para 

problemas de otimização. 

• Aplicações: Planejamento urbano, energia, transporte. 

• Impacto: Usado em projetos de cidades inteligentes e redes elétricas. 

5. Hitachi 

• Destaque: Trabalha com algoritmos quantum-inspired para previsão de demanda e 

controle de sistemas industriais. 

• Aplicações: Manufatura, energia, transporte ferroviário. 

• Impacto: Integração com sistemas de controle em tempo real para eficiência energética e 

logística. 

BMW + Zapata + MIT: Otimização da produção automotiva 
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A BMW, em parceria com a Zapata Computing e o MIT Center for Quantum Engineering, 

aplicou uma técnica chamada GEO (Generator-Enhanced Optimization) para otimizar o 

agendamento de produção de veículos em múltiplas fábricas. 

O desafio: 

• Sincronizar linhas de montagem com diferentes capacidades, turnos e restrições 

logísticas. 

• Minimizar o tempo ocioso das linhas e evitar gargalos de produção. 

• Lidar com milhares de variáveis e configurações possíveis — um problema combinatório 

de altíssima complexidade. 

A solução: 

• O GEO usa modelos generativos quantum-inspired que aprendem com os resultados de 

otimizadores clássicos e os superam iterativamente. 

• Foram realizados cerca de 1 milhão de testes de otimização com diferentes algoritmos e 

configurações, usando a plataforma Orquestra da Zapata. 

Resultados: 

• O GEO superou os otimizadores tradicionais em 71% dos casos, reduzindo o tempo 

ocioso e melhorando o cumprimento das metas de produção mensal. 

• A abordagem mostrou robustez e escalabilidade, mesmo em cenários com alta 

variabilidade e múltiplas restrições. 

Esse projeto não só ofereceu soluções práticas para a BMW, como também serviu como um 

marco de como IA generativa e princípios quânticos podem transformar a manufatura 

automotiva. 

D-Wave: entre o quântico e o quantum-inspired 

A D-Wave é pioneira em quantum annealing, uma abordagem diferente do modelo de portas 

quânticas (gate-based) usado por IBM e Google. Embora a D-Wave opere com hardware 

quântico real, muitos dos algoritmos que ela desenvolve — e que seus clientes usam — são 

híbridos ou inspirados em annealing quântico, e podem ser simulados em hardware clássico. 

Isso a coloca em uma zona interessante entre o quântico puro e o quantum-inspired. 
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Além disso, a D-Wave tem investido em plataformas híbridas, como o Leap Hybrid Solver, 

que combina técnicas clássicas e quânticas para resolver problemas de otimização. Isso a torna 

relevante para o ecossistema quantum-inspired, mesmo que seu core seja quântico. 

Outras pure plays listadas em bolsa: 

Além da D-Wave (QBTS), outras empresas listadas que atuam com tecnologias correlatas 

incluem: 

• IonQ (IONQ) — mais voltada ao modelo gate-based, mas com interesse crescente em 

algoritmos híbridos. 

• Rigetti Computing (RGTI) — também gate-based, mas com iniciativas de integração 

com algoritmos clássicos. 

• Quantum Computing Inc. (QUBT) — atua com hardware e software, incluindo 

simulações e algoritmos inspirados. 

Essas empresas estão em estágios diferentes de maturidade e enfrentam desafios financeiros 

significativos, como você bem sabe. Mas do ponto de vista de exploração de heurísticas 

quânticas em ambientes clássicos, elas são players relevantes — especialmente quando se 

observa o movimento de "quantum practicality": entregar valor antes da supremacia quântica 

plena. 

Entre as empresas pure play listadas em bolsa, a D-Wave é a que mais se destaca com 

aplicações práticas reais já em produção: 

D-Wave Quantum (QBTS) 

• Ford Otosan: reduziu o tempo de criação de cronogramas de produção em mais de 80% 

usando a plataforma híbrida da D-Wave. 

• NTT DOCOMO: melhorou o desempenho de redes móveis em 15%, otimizando 

alocação de recursos com algoritmos quânticos. 

• Pattison Food Group: automatizou o agendamento de motoristas de entrega, reduzindo 

o esforço manual em ~80%. 

• Japan Tobacco: acelerou simulações de descoberta de fármacos com IA generativa 

híbrida. 

• Jülich Supercomputing Centre (Alemanha): integrou o sistema Advantage2 à 

infraestrutura exascale para pesquisa em otimização e IA. 
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Esses casos não são apenas proofs of concept — são implementações em produção, com 

ganhos mensuráveis em tempo, custo e eficiência. 

O  problema de partição de números (Number Partitioning Problem), que é NP-difícil e 
tem aplicações em balanceamento de carga, alocação de tarefas e até criptografia. 

O problema: 

Dado um conjunto de números inteiros, queremos dividi-los em dois subconjuntos com somas o 

mais próximas possível. Exemplo: 

S = [3, 1, 4, 2, 2] 

Modelagem QUBO: 

Definimos uma variável binária xi∈{0,1}x_i \in \{0,1\} para cada elemento si∈Ss_i \in S, onde: 

• xi=0x_i = 0 → o número vai para o subconjunto A 

• xi=1x_i = 1 → o número vai para o subconjunto B 

Queremos minimizar o quadrado da diferença entre as somas dos subconjuntos: 

Minimizar:   ( ∑ sᵢ × (1 − 2xᵢ) )² 

Expandindo e simplificando, obtemos a função objetivo QUBO: 

Minimizar:   xᵗ × Q × x 

Onde a matriz Q é definida por:   Qᵢⱼ = 4 × sᵢ × sⱼ  (para todos os pares i, j) 

Exemplo com dimod (D-Wave Ocean SDK) 

O que é o dimod? 

O dimod é o núcleo matemático da Ocean SDK da D-Wave. Ele fornece: 

• Representações formais de modelos quadráticos (como QUBO e Ising); 
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• Estruturas de dados para manipular esses modelos; 

• Interfaces para samplers (solvers) clássicos e quânticos; 

• Ferramentas para compor, transformar e analisar problemas de otimização. 

Etapa 1: Construção do modelo (BinaryQuadraticModel) 

Tudo começa com a criação de um Binary Quadratic Model (BQM), que representa a função 

objetivo: 

import dimod 

# Exemplo: minimizar E(x) = -x0 + x1 + 2x0x1 

linear = {0: -1, 1: 1} 

quadratic = {(0, 1): 2} 

offset = 0.0 

bqm = dimod.BinaryQuadraticModel(linear, quadratic, offset, vartype=dimod.BINARY) 

Internamente, o bqm é representado como um grafo ponderado: 

• Cada nó (variável) tem um peso linear. 

• Cada aresta (par de variáveis) tem um peso quadrático. 

• O offset é um termo constante. 

Etapa 2: Escolha do sampler 

O dimod não resolve nada por si só — ele encaminha o modelo para um sampler. Exemplo 

com o SimulatedAnnealingSampler: 

sampler = dimod.SimulatedAnnealingSampler() 

sampleset = sampler.sample(bqm, num_reads=100) 

Esse sampler implementa annealing clássico: 
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• Inicializa com uma solução aleatória. 

• Aplica perturbações (flips de bits). 

• Aceita ou rejeita com base em uma função de energia e temperatura (simulando 

resfriamento térmico). 

• Repete o processo várias vezes para escapar de mínimos locais. 

Você pode acessar os parâmetros internos: 

sampleset.info  # mostra metadados como tempo, temperatura, etc. 

Etapa 3: Análise do resultado 

O sampleset é um objeto que contém: 

• As soluções (vetores binários); 

• As energias associadas; 

• A frequência com que cada solução apareceu. 

for sample, energy in sampleset.data(['sample', 'energy']): 

    print(sample, energy) 

Internamente: como o dimod representa tudo? 

• O BinaryQuadraticModel usa uma estrutura de adjacência para armazenar variáveis e 

seus vizinhos. 

• Ele suporta operações simbólicas (como adição de modelos, escalonamento, fixação de 

variáveis). 

• Ele pode ser convertido para formatos como QUBO, Ising, ou até exportado para JSON. 

• O que é o dimod, afinal? 
• Imagine que você tem um problema difícil, como dividir tarefas igualmente entre 

pessoas, organizar entregas com o menor custo, ou balancear recursos de uma empresa. 

Resolver isso manualmente ou por tentativa e erro leva séculos. O dimod é como uma 

calculadora inteligente que pega esses problemas e os transforma em modelos 

matemáticos estruturados, prontos para serem resolvidos por algoritmos de otimização. 
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• Ele não é o “motor” em si — ele é o “modelo da pista e do veículo”. Você constrói o 

problema com ele e depois o envia para um “motorista” (chamado sampler) que vai 

buscar as melhores rotas/soluções. 

Qual a grande sacada do dimod? 

A sacada é representar o problema como uma equação com variáveis que só podem valer 0 ou 1 

(sim ou não). Isso se chama modelo binário quadrático. Por quê? 

Porque muitos problemas do mundo real, por mais variados que pareçam, podem ser 

reescritos como: “qual a combinação de escolhas binárias que minimiza um certo custo?” 

Exemplos: 

• Ligo ou desligo essa máquina? 

• Atribuo esse item a este grupo ou ao outro? 

• Escolho essa rota ou aquela? 

Essas decisões são naturalmente binárias — e o dimod sabe montar a equação que representa 

isso. 

E qual o truque para calcular mais rápido? 

Aqui entra a mágica: o dimod não resolve por força bruta (testando todas as combinações 

possíveis). Em vez disso, ele usa uma técnica chamada simulated annealing, que imita o 

comportamento de materiais sendo resfriados na natureza. 

Funciona assim: 

1. Ele começa com uma solução aleatória (como uma chute inicial). 

2. Depois faz pequenas mudanças e verifica se melhorou. 

3. Se piorou, às vezes aceita — para não ficar preso em soluções ruins. 

4. Vai “esfriando” aos poucos (literalmente reduzindo a chance de aceitar coisa pior). 

5. No fim, fica só com as melhores soluções encontradas. 

Esse processo é leve, adaptativo e muito mais rápido do que testar tudo, mesmo em 

computadores comuns. 
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Annealing, no contexto computacional, é uma metáfora emprestada da metalurgia. 
Quando um metal é aquecido a uma temperatura muito alta, seus átomos se movem 
livremente. Ao ser resfriado lentamente, eles começam a se organizar, buscando uma 
configuração mais estável e com menor energia interna. Se o resfriamento for gradual o 
suficiente, o material pode atingir uma estrutura cristalina ótima — o famoso estado de 
energia mínima global. 

Inspirados por isso, os cientistas criaram o simulated annealing, um algoritmo que imita 
esse comportamento para resolver problemas de otimização. No início, o algoritmo 
permite mudanças aleatórias e até aceita soluções “piores” momentaneamente — como 
se estivesse em alta temperatura. Isso evita que ele fique preso em mínimos locais logo no 
começo. À medida que o “sistema esfria”, ele se torna mais seletivo, aceitando apenas 
mudanças que realmente levam a uma melhora. Com sorte (e tempo), encontra a melhor 
solução possível. 

O quantum annealing, por sua vez, leva esse conceito a um outro nível. Em vez de simular 
o aquecimento e o resfriamento térmico, ele explora os efeitos da mecânica quântica — 
em especial o tunelamento quântico. Imagine que, em vez de tentar escalar uma 
montanha para sair de um vale (um mínimo local), o sistema “atravessa” a montanha, 
literalmente, por baixo. Esse efeito é exclusivo do mundo quântico e permite que o sistema 
escape de armadilhas que prenderiam algoritmos clássicos. Não é só sorte ou calor: é 
uma forma completamente nova de explorar o espaço de soluções. 

Essa habilidade de evitar mínimos locais vem justamente daí — enquanto o annealing 
clássico depende de uma jornada bem planejada pelo relevo da função de custo, o 
quantum annealing tem o poder de teletransportar-se através de obstáculos. Ele é guiado 
por uma função Hamiltoniana que vai sendo suavemente transformada ao longo do 
tempo, conduzindo o sistema de um estado quântico conhecido (e simples) até o estado 
de energia mínima do problema original. 

Na prática, isso significa que mesmo em problemas complexos, com milhares de soluções 
ruins cercando poucas boas, o sistema quântico tem uma chance real de escapar de 
becos sem saída onde algoritmos tradicionais — e até o simulated annealing — facilmente 
ficariam presos. 

Vou buscar aqui ser mais didático: 
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O que é uma função Hamiltoniana? 

No contexto da física (mais especificamente na mecânica clássica e quântica), uma 

Hamiltoniana é uma função que descreve a energia total de um sistema — geralmente como a 

soma da energia cinética e potencial. 

Se você tem um sistema com partículas, massas, forças... a Hamiltoniana atua como um "mapa 

de energia" que te permite prever como o sistema vai evoluir com o tempo. No mundo quântico, 

ela se torna um operador que governa a evolução dos estados quânticos de acordo com a equação 

de Schrödinger. 

E por que ela é usada em quantum annealing? 

Porque a ideia de quantum annealing é “conduzir” um sistema físico (ou simulado) para o estado 

de menor energia possível — e esse estado está codificado na Hamiltoniana do problema. 

O truque genial é este: 

1. Primeiro se define uma Hamiltoniana simples (chamada Hamiltoniana inicial) cujo 

estado fundamental (estado de menor energia) é fácil de encontrar. Por exemplo, todos os 

qubits em superposição igual. 

2. Depois, lentamente, essa Hamiltoniana é transformada ao longo do tempo em uma outra 

— a Hamiltoniana do problema — cuja configuração de energia mínima representa a 

solução ótima do problema que queremos resolver. 

Essa transição é regida por um princípio chamado adiabático: se a mudança for lenta o 

suficiente, o sistema “acompanha” esse caminho e permanece no estado fundamental o tempo 

todo. 

Ao final do processo, você mede o sistema — e o resultado revela a combinação de variáveis (ou 

decisões) que resolve o problema com o menor custo possível. 

E por que isso evita mínimos locais? 

Porque o tunelamento quântico permite ao sistema "atravessar" barreiras de energia que, em 

métodos clássicos, precisariam ser escaladas. Mesmo que o caminho esteja cercado de vales 
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rasos (mínimos locais), o sistema quântico tem chance de emergir do outro lado — direto no vale 

mais profundo, o estado globalmente ótimo. 

Esse processo é diferente de métodos clássicos que tentam escapar dos mínimos locais “pulando” 

por cima. O quantum annealing tenta atravessar diretamente, porque a descrição quântica da 

Hamiltoniana permite essa possibilidade física. 

A função Hamiltoniana: origem e formalismo 

Historicamente, a função Hamiltoniana surgiu no século XIX por William Rowan Hamilton 

como uma reformulação da mecânica clássica. Ela substitui a abordagem newtoniana baseada em 

forças por um formalismo centrado em energia. 

A Hamiltoniana, denotada por: 

H(q, p, t) = Σ [pᵢ × q̇ᵢ] − L(q, q̇, t) 

representa a energia total de um sistema — onde: 

• qᵢ são as coordenadas generalizadas (posição), 

• pᵢ são os momentos conjugados (momento linear correspondente a cada qᵢ), 

• L é a Lagrangiana do sistema, definida como energia cinética menos energia potencial. 

As equações de Hamilton descrevem a evolução do sistema ao longo do tempo: 

dqᵢ/dt = ∂H/∂pᵢ   dpᵢ/dt = −∂H/∂qᵢ 

Na mecânica quântica, essa função se transforma em um operador que atua sobre o vetor de 

estado quântico e define sua evolução temporal pela equação de Schrödinger: 

i × ℏ × dψ/dt = Ĥ × ψ 

O operador Hamiltoniano Ĥ é a “alma” do sistema físico: ele dita os estados possíveis, suas 

energias e como evoluem. 

Parte II — Hamiltonianas em otimização e quantum annealing 
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Em computação quântica, a ideia é codificar um problema de otimização dentro da 

Hamiltoniana. O sistema começa em um estado simples, onde a solução é conhecida, e evolui 

lentamente para uma Hamiltoniana mais complexa que representa o problema. A fórmula de 

evolução é: 

H(t) = (1 − s(t)) × H_inicial + s(t) × H_problema 

onde: 

• H(t) é a Hamiltoniana total no instante t, 

• H_inicial é simples e tem estado fundamental conhecido, 

• H_problema é construída com base no problema, 

• s(t) varia gradualmente de 0 a 1. 

Segundo o Teorema Adiabático, se essa evolução for lenta o suficiente, o sistema permanece no 

seu estado de menor energia (estado fundamental). No final, a configuração de menor energia 

representa a solução ótima do problema. 

Exemplo: QUBO → Hamiltoniana Ising 

Considere o problema de minimizar a seguinte função QUBO: 

E(x) = −x₀ + x₁ + 2 × x₀ × x₁ 

Queremos reescrevê-la em termos de variáveis de spin (z₀, z₁), com zᵢ ∈ {−1, +1}. Para isso, 

usamos a transformação: 

xᵢ = (1 + zᵢ) / 2 

Substituímos em E(x), desenvolvemos a expressão e reagrupamos os termos para obter: 

H = h₀ × z₀ + h₁ × z₁ + J₀₁ × z₀ × z₁ + constante 

com coeficientes específicos h₀, h₁, J₀₁ definidos a partir da expansão algébrica. Essa nova função 

H é agora uma Hamiltoniana no modelo de Ising, que pode ser implementada fisicamente em 

máquinas de quantum annealing (como o D-Wave). 



 
 

Dr. Marcos Elias Matemático, engenheiro, pesquisador e empreendedor Fundador do Ramanujan Institute, HoloSystems 

Quantum, Equiverse e Kiyosito Av. Brigadeiro Faria Lima, 2277 – 4º andar Jardim Paulistano – São Paulo – SP – CEP 01489-

901 Brasil 

www.ramanujan.institute | www.holosystemsquantum.com | www.equiverse.com.br | www.kiyosito.io 

21 
 

A solução do problema corresponde ao estado com menor valor de H — isto é, o estado 

fundamental do sistema. 

A transição da formulação newtoniana (centrada em forças) para o formalismo 
hamiltoniano (centrado em energia) não foi apenas uma questão de reescrever equações: 
foi uma mudança paradigmática na forma de pensar a dinâmica dos sistemas físicos, 
com implicações profundas que iriam da teoria dos sistemas dinâmicos à mecânica 
quântica. 

O contexto do século XIX e a motivação de Hamilton 

William Rowan Hamilton (1805–1865) era um matemático e físico irlandês, originalmente 

interessado em óptica geométrica e mecânica analítica, e foi profundamente influenciado pelos 

trabalhos de Lagrange, que já havia formulado uma mecânica baseada em energia (a 

Lagrangiana). A grande sacada de Hamilton surgiu ao notar uma analogia entre os raios de luz 

em óptica e as trajetórias de partículas em mecânica. 

Ele se perguntava: e se a evolução de um sistema físico (como o movimento de uma partícula) 

pudesse ser tratada como uma propagação de energia ao longo de uma trajetória no espaço de 

configurações, assim como os raios de luz seguem trajetórias minimizando o tempo? 

Hamilton procurava uma formulação que unificasse os princípios da mecânica com os da 

óptica — um modelo universal, baseado em variação de energia e que revelasse as estruturas 

profundas do movimento, de forma independente do sistema de coordenadas utilizado. 

Limitações da abordagem newtoniana 

A formulação de Newton é poderosa, mas tem limitações — especialmente quando aplicada a 

sistemas complexos. Vamos considerar por que: 

1. Depende fortemente de forças explícitas: para aplicar F = m × a, você precisa conhecer 

a força resultante sobre cada corpo em termos vetoriais. Isso é fácil para corpos isolados, 

mas incrivelmente complicado em sistemas com muitas restrições ou interações indiretas. 

2. Coordenação complicada: o formalismo vetorial de forças exige referência a sistemas 

inerciais e coordenadas cartesianas. Sistemas com geometrias não euclidianas (como 

braços articulados, corpos sobre superfícies curvas, sistemas orbitais) exigem 

“malabarismos” de forças e projeções. 
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3. Não revela simetrias naturais: a abordagem newtoniana muitas vezes oculta simetrias 

(como conservação de momento angular, energia ou momento linear), pois trata o sistema 

de forma operacional, não estrutural. 

Em resumo: o formalismo de forças funciona, mas não escala bem para sistemas com muitos 

graus de liberdade, vínculos, geometrias complexas ou que envolvam campos, não partículas. 

A ideia central de Hamilton: energia como “função geradora” 

Ao reformular a mecânica, Hamilton propôs substituir o foco nas forças por uma função escalar 

que encapsula toda a energia do sistema — a Hamiltoniana. 

Ele parte da Lagrangiana, definida como: 

L(q, q̇, t) = Energia Cinética − Energia Potencial 

e define os momentos conjugados como: 

pᵢ = ∂L/∂q̇ᵢ 

A Hamiltoniana é então construída como a transformada de Legendre da Lagrangiana: 

H(q, p, t) = Σ [pᵢ × q̇ᵢ] − L(q, q̇, t) 

Este é o primeiro passo que revela um novo espaço geométrico: o espaço de fase (q, p). Ao 

invés de trabalhar com posições e velocidades (q, q̇), o Hamiltonianismo passa a descrever a 

dinâmica por meio das variáveis posição e momento (q, p), onde o tempo é um parâmetro 

externo. 

Por que essa mudança é revolucionária? 

1. Universalidade: O formalismo hamiltoniano funciona para qualquer sistema — desde 

um pêndulo até órbitas planetárias, circuitos elétricos, campos contínuos, sistemas 

relativísticos e, claro, a mecânica quântica. 

2. Geometria do espaço de fase: Ao tratar posições e momentos como coordenadas de um 

espaço unificado, Hamilton introduz a base para o que hoje chamamos de estrutura 
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simplética, abrindo o caminho para a teoria moderna dos sistemas dinâmicos e caos 

determinístico. 

3. Equações de primeira ordem: As equações diferenciais newtonianas são de segunda 

ordem (envolvem aceleração). A formulação hamiltoniana expressa a evolução do 

sistema como um sistema de equações diferenciais de primeira ordem, acopladas: 

dqᵢ/dt = ∂H/∂pᵢ   dpᵢ/dt = −∂H/∂qᵢ 

Essa estrutura revela simetrias e invariantes de forma clara — por exemplo, se a Hamiltoniana 

não depende explicitamente de uma coordenada, o momento conjugado a ela é conservado. 

4. Conexão direta com a mecânica quântica: No século XX, a mecânica quântica nasceu 

diretamente do formalismo hamiltoniano. A energia total se tornou um operador Ĥ, e suas 

equações passaram a reger o comportamento dos estados quânticos: 

5.  

i × ℏ × dψ/dt = Ĥ × ψ 

Ou seja, o salto da física clássica para a quântica não teria sido possível na linguagem de 

forças de Newton. O formalismo hamiltoniano é o verdadeiro “código-fonte” por trás do 

quantum. 

Conclusão: o que Hamilton sacou 

Hamilton percebeu que, para entender a dinâmica de sistemas físicos — especialmente sistemas 

complexos, com múltiplas interações, simetrias ocultas e geometrias não triviais — não bastava 

pensar em forças. Era preciso pensar em energia como princípio organizador, e em estruturas 

matemáticas mais ricas do que vetores e projeções. 

Ele criou não apenas um método de cálculo, mas uma nova linguagem da física — que revelou o 

espaço de fase, abriu caminho para a física moderna, e cujo legado vai da teoria de campos 

clássicos ao algoritmo de Grover. 

Agora vou contar-lhes essa é uma das histórias mais intensas, quase dramáticas, da física 
moderna. O retorno à Hamilton — à sua ideia de uma função que encapsula toda a energia 
do sistema — não foi um passeio acadêmico: foi uma necessidade existencial, uma 
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resposta ao colapso da física clássica frente ao comportamento inexplicável da matéria no 
nível atômico. Vamos mergulhar? 

A tragédia da física clássica no início do século XX 

No final do século XIX, a física parecia completa: as equações de Newton, Maxwell e Hamilton 

pareciam explicar tudo. Mas logo vieram sinais perturbadores: 

• O espectro da radiação de corpo negro (que levou à "catástrofe do ultravioleta"); 

• O efeito fotoelétrico, que não podia ser explicado por ondas clássicas; 

• O comportamento dos elétrons em átomos, que deveriam espiralar e colapsar segundo o 

eletromagnetismo clássico. 

Esses fenômenos gritavam por uma nova estrutura conceitual. 

A revolta quântica: quem retomou Hamilton? 

A retomada do formalismo de Hamilton na física quântica aconteceu em duas frentes 

independentes, quase simultaneamente, entre 1924 e 1926. Ambas se basearam na noção de 

energia como operador e sistemas dinâmicos descritos por Hamiltonianas. Mas a motivação 

não foi reverenciar Hamilton: foi tentar descrever corretamente o mundo atômico. 

1. Werner Heisenberg e a mecânica matricial (1925) 

Heisenberg, trabalhando sob influência de Max Born e Pascual Jordan, deu um passo radical: 

abandonou completamente os conceitos clássicos de trajetória e posição. Ele considerou apenas 

quantidades observáveis, como frequências e intensidades de radiação emitida por átomos. 

Ele organizou essas quantidades em tabelas de transição, que foram interpretadas por Born 

como matrizes. A multiplicação dessas matrizes era não comutativa, e foi aqui que a analogia 

com mecânica clássica apareceu: a não comutatividade lembrava os parênteses de Poisson, que 

na mecânica hamiltoniana expressam relações fundamentais como: 

{q, p} = 1 

Isso levou à formulação das relações de comutação quântica: 
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[q̂, p̂] = iℏ 

— que é, em essência, uma versão quantizada das equações de Hamilton. A Hamiltoniana, 

agora um operador Ĥ, passa a reger a evolução temporal do sistema: 

dA/dt = (i/ℏ) × [Ĥ, A] + (∂A/∂t) 

Essa é a versão quântica das equações de Hamilton, escrita em termos de operadores e 

comutadores. 

2. Erwin Schrödinger e a mecânica ondulatória (1926) 

Independentemente, Schrödinger, influenciado pela ideia de Louis de Broglie de que partículas 

tinham natureza ondulatória, buscava uma equação que governasse a evolução dessas ondas. 

Ele se inspirou diretamente na analogia entre a óptica e a mecânica clássica, notada por 

Hamilton décadas antes. Ao considerar a Hamiltoniana clássica de uma partícula (H = p²/2m + 

V), e substituindo o momento p por um operador diferencial (p̂ = −iℏ∇), ele obteve: 

Ĥψ = Eψ 

e, com o tempo, escreveu a equação completa: 

iℏ × (∂ψ/∂t) = Ĥψ 

Essa é a equação de Schrödinger, em que Ĥ é o operador hamiltoniano, e ψ é a função de onda 

(estado do sistema). Novamente, a estrutura da mecânica de Hamilton está ali — mas agora no 

âmago do mundo quântico. 

Um esforço coletivo... e angustiado 

Não houve um "grupo de estudo" unificado, mas sim uma série de mentes brilhantes reagindo 

ao colapso do paradigma clássico. Além de Heisenberg e Schrödinger, contribuíram 

decisivamente: 

• Paul Dirac, que formalizou a analogia entre parênteses de Poisson e comutadores, e 

unificou as visões matricial e ondulatória; 

• Max Born, que interpretou probabilisticamente a função de onda; 
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• Pascual Jordan, que ajudou a desenvolver a algebra de operadores; 

• John von Neumann, que rigorosamente reformulou tudo em termos de operadores auto-

adjuntos em espaços de Hilbert. 

Todos eles, direta ou indiretamente, precisaram voltar ao formalismo de Hamilton para encontrar 

solidez matemática e estrutural. 

A motivação: desespero criativo 

O que impulsionou esses cientistas foi uma mistura de frustração e ousadia. Eles se viam diante 

de fenômenos que contradiziam tudo o que a física clássica havia ensinado, e não havia manual. 

Foram obrigados a abandonar trajetórias, causas deterministas e até a própria noção de realidade 

objetiva. 

A Hamiltoniana oferecia uma base segura: ela já era uma linguagem de sistemas dinâmicos, uma 

máquina geradora de equações de movimento. Ao promovê-la de função clássica a operador 

quântico, os físicos encontraram o eixo em torno do qual o universo quântico poderia finalmente 

ser descrito. 

Vou  traçar aqui  genealogia do pensamento hamiltoniano até os alicerces da física 
moderna — costurando as ideias que nasceram na mecânica clássica e floresceram até 
alcançar a teoria quântica de campos. 

De Hamilton à Mecânica Quântica: a semente 

A função Hamiltoniana nasce no século XIX como uma reinterpretação da mecânica clássica, 

centrada em energia. Essa reformulação revela algo profundo: que o espaço de fase (posição e 

momento) e suas transformações contêm simetrias fundamentais que regem a natureza. Mas essa 

beleza matemática ficou, por décadas, confinada ao reino clássico. 

Com a chegada dos fenômenos atômicos inexplicáveis no início do século XX, essa linguagem 

foi “ressuscitada” — primeiro como uma forma de entender a dinâmica quântica de partículas 

discretas (Schrödinger e Heisenberg), depois como a espinha dorsal dos operadores dinâmicos 

da mecânica quântica (Dirac). 

Da Mecânica Quântica à Eletrodinâmica Quântica (QED) 
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A teoria quântica evoluiu da descrição de partículas isoladas para a de sistemas com múltiplas 

partículas e interações, principalmente com campos. 

A Hamiltoniana, agora como operador densidade de energia, passou a incluir não só partículas 

(como elétrons e pósitrons), mas também campos (como o campo eletromagnético). Isso gerou 

uma necessidade de quantizar não mais variáveis discretas, mas campos inteiros — nascendo aí 

a teoria quântica de campos. 

Heisenberg, Dirac e Pauli foram os primeiros a tentar essa quantização dos campos. Mas foi com 

Feynman, Schwinger, Tomonaga e Dyson, nas décadas de 1940 e 1950, que a Eletrodinâmica 

Quântica (QED) foi construída com sucesso, incluindo: 

• Hamiltonianas para campos de fótons e férmions; 

• Diagramas de Feynman como ferramenta para representar interações no espaço-tempo; 

• Técnicas de renormalização para lidar com infinitos. 

Da QED ao Modelo Padrão: o formalismo se expande 

A estrutura Hamiltoniana continuou sendo fundamental na construção do Modelo Padrão da 

física de partículas, que descreve todas as interações conhecidas (exceto a gravidade) como 

teorias quânticas de campos baseadas em simetrias de calibre. 

A função Hamiltoniana, nesse cenário, é escrita a partir de: 

• Densidades lagrangianas quantizadas; 

• Momentos conjugados definidos no espaço-tempo; 

• Operadores de criação e aniquilação. 

Nomes como Glashow, Weinberg, Salam, Higgs e Gell-Mann continuaram essa genealogia, 

articulando campos com estruturas internas de simetria (SU(2), SU(3), U(1)). 

A Hamiltoniana torna-se cada vez mais complexa, mas continua o coração matemático que 

determina a evolução dos estados quânticos — agora em espaços de Hilbert 

infinitodimensionais. 

Teoria Quântica de Campos e Gravidade Quântica 
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Hoje, a Hamiltoniana ainda é central na busca pela unificação da mecânica quântica com a 

relatividade geral. Em abordagens como: 

• Loop Quantum Gravity, que busca quantizar diretamente o espaço-tempo; 

• Teoria de cordas, onde a Hamiltoniana descreve vibrações de objetos unidimensionais 

(cordas) em espaços de múltiplas dimensões. 

Mesmo com tensões conceituais entre espaço-tempo contínuo e quântico, todas essas tentativas 

se baseiam no princípio hamiltoniano: estados evoluem conforme operadores de energia 

agindo sobre eles. 

Hamilton como espinha dorsal 

A função que Hamilton concebeu como um mecanismo matemático elegante para descrever raios 

de luz e trajetórias de planetas se revelou, ao longo de dois séculos, a linguagem universal da 

física fundamental. 

De átomos a partículas elementares, de oscilações a campos quânticos e até a teias cósmicas, a 

Hamiltoniana é a entidade que responde à pergunta central da física: 

> "Qual é a energia total do sistema — e como ela transforma o estado da realidade ao longo do 

tempo?" 

E isso é nada menos do que o roteiro do universo. 

Vamos ver agora como a estrutura hamiltoniana é usada hoje em algoritmos variacionais 
para simular moléculas e materiais, especialmente em dispositivos quânticos de curto 
prazo (NISQ). 

O problema: simular moléculas com precisão quântica 

A estrutura eletrônica de uma molécula é descrita por uma Hamiltoniana molecular, que 

representa a energia total do sistema (elétrons + núcleos). Essa Hamiltoniana é escrita como uma 

soma de termos de operadores de Pauli, por exemplo: 

H = c₀ × I + c₁ × Z₀ + c₂ × Z₁ + c₃ × Z₀Z₁ + ... 
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O objetivo é encontrar o estado fundamental dessa Hamiltoniana — ou seja, o menor valor 

esperado de energia, que corresponde à configuração eletrônica mais estável da molécula. 

A solução: algoritmos variacionais (como o VQE) 

O Variational Quantum Eigensolver (VQE) é um algoritmo híbrido (quântico-clássico) que 

resolve esse problema da seguinte forma: 

1. Escolhe-se um circuito quântico parametrizado (ansatz), que gera um estado quântico 

|ψ(θ)⟩ a partir de parâmetros clássicos θ. 

2. Calcula-se a energia esperada desse estado com relação à Hamiltoniana: 

E(θ) = ⟨ψ(θ)| H |ψ(θ)⟩ 

3. Um otimizador clássico ajusta os parâmetros θ para minimizar E(θ). 

Esse processo é iterativo: o circuito é executado várias vezes com diferentes θ até que a energia 

mínima seja encontrada. 

Aplicações reais 

• Moléculas pequenas como H₂, LiH, BeH₂ já foram simuladas com sucesso em 

dispositivos quânticos reais usando VQE. 

• Materiais com interações eletrônicas complexas (como óxidos de metais de transição) 

estão sendo estudados com variantes do VQE, como o adaptive VQE e o unitary 

coupled cluster ansatz. 

• O artigo Variational Quantum Hamiltonian Engineering mostra como reduzir a 

complexidade da Hamiltoniana molecular minimizando sua norma de Pauli, o que reduz 

o número de medições necessárias. 

Pessoal, agora vamos tocar em um ponto essencial — e frequentemente mal 
compreendido — no desenvolvimento de algoritmos quânticos. Apesar de estarmos 
lidando com fenômenos de natureza física, como superposição, interferência e 
emaranhamento, a linguagem operacional da computação quântica é 
fundamentalmente a álgebra linear. Vamos construir essa explicação de forma 
progressiva e rigorosa. 
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O que é Álgebra Linear? 

Álgebra linear é o ramo da matemática que estuda vetores, espaços vetoriais, matrizes e 

transformações lineares. Em essência, trata-se do estudo de como sistemas se comportam 

quando operamos sobre eles com regras lineares — isto é, operações que preservam adição e 

multiplicação por escalares. 

Por que isso é relevante? Porque os estados quânticos e as operações quânticas são vetores e 

operadores lineares. 

No modelo de circuito quântico: 

• O estado quântico de um sistema com n qubits é representado por um vetor coluna de 

dimensão 2ⁿ com entradas complexas (um vetor no espaço de Hilbert ℂ²ⁿ); 

• As operações sobre os qubits (portas lógicas quânticas) são representadas por matrizes 

unitárias que agem linearmente sobre esses vetores; 

• A medição é descrita por operadores projetores (também definidos por matrizes). 

• Como isso conecta com Hamilton? 
• A função Hamiltoniana, quando usada como um operador sobre estados quânticos, é 

expressa como uma matriz hermitiana (isto é, igual à sua conjugada transposta). 

Quando dizemos que um algoritmo de otimização quântica “minimiza a energia de uma 

Hamiltoniana”, estamos realmente dizendo: 

• > Encontre o autovetor da matriz H correspondente ao menor autovalor. 

• Ou seja: trata-se de um problema espectral, um problema de álgebra linear por 

excelência. O mesmo ocorre com algoritmos como o QAOA, VQE ou estimadores de 

fase (Quantum Phase Estimation): todos envolvem autovalores, autovetores e 

simulações de operadores lineares. 

• A mecânica quântica, no seu núcleo matemático, é inteiramente expressa com estrutura 

vetorial — espaços de Hilbert, produtos internos, operadores lineares, decomposições 

espectrais. A física fornece a interpretação, mas a álgebra linear fornece a 

operacionalidade. 

O que é básico em álgebra linear para algoritmos quânticos? 

Aqui está o que um desenvolvedor de algoritmos quânticos (ou quantum-inspired) precisa 

dominar como pré-requisito: 
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• Vetores e normas: entender amplitudes e probabilidades (ex: ||ψ|| = 1). 

• Produto interno e ortogonalidade: crucial para distinguir estados (ex: ⟨φ|ψ⟩ = 0 se 

ortogonais). 

• Matrizes unitárias: todas as operações quânticas são unitárias (ex: U†U = I). 

• Matrizes hermitianas: representam observáveis físicos e Hamiltonianas. 

• Autovalores e autovetores: a medição é uma projeção sobre autovetores. 

E o que é avançado — e indispensável para escrever algoritmos quânticos? 

Para construir algoritmos eficientes, generalizáveis e que escapem do “copiar e colar” de 

circuitos genéricos, é essencial dominar: 

• Decomposição espectral (teorema espectral): saber que toda matriz hermitiana pode ser 

diagonalizada em uma base ortonormal de autovetores. 

• Álgebra de operadores (tensores de Pauli, produtos tensoriais): toda Hamiltoniana 

local é expressa como soma de produtos de operadores de Pauli. 

• Transformadas unitárias parametrizadas: fundamentais em algoritmos variacionais 

(ex: U(θ) = e^{-iHθ}). 

• Simulação de operadores exponenciais (Trotter-Suzuki): para decompor e simular 

dinamicamente evoluções quânticas. 

• Codificação eficiente (sparse matrices, low-rank approximations): para representar 

operadores em escalas viáveis. 

No caso dos algoritmos quantum-inspired? 

Mesmo quando executamos tudo em hardware clássico, se o algoritmo é inspirado em modelos 

quânticos (como tensor networks, quantum walks, ou heurísticas baseadas em tunneling), ele 

ainda se fundamenta em representações vetoriais, decomposições matriciais e manipulações 

lineares — só que em ambientes simulados. 

Frameworks como o Qiskit, PennyLane ou Tequila, e mesmo bibliotecas como o dimod, são 

essencialmente mecanismos de álgebra linear acelerados e organizados para modelar esses 

sistemas. 

Pessoal, agora vou montar um percurso sólido de estudos em álgebra linear com foco em 
aplicações quânticas, que  é como desenhar a base de um foguete: tudo o que vem depois 
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depende da estrutura estar firme. Aqui está uma trilha progressiva e bem conectada com 
algoritmos quânticos e quantum-inspired: 

1. Fundamentos Essenciais 

Objetivo: entender vetores, operações básicas e interpretação geométrica. 

Temas: 

• Vetores em ℝⁿ e ℂⁿ, norma e distância 

• Produtos escalar e vetorial 

• Matriz como operador linear 

• Transformações lineares simples (reflexão, rotação, projeção) 

Dica prática: visualize vetores e matrizes com ferramentas como GeoGebra ou Desmos para 

fortalecer a intuição geométrica. 

2. Espaços Vetoriais e Subespaços 

Objetivo: compreender o "mundo onde os vetores vivem". 

Temas: 

• Espaços vetoriais sobre ℝ e ℂ 

• Subespaços, base, dimensão 

• Dependência e independência linear 

• Mudança de base e coordenadas 

Aplicação quântica: estados quânticos vivem em espaços de Hilbert, que são essencialmente 

espaços vetoriais complexos com produto interno. 

3. Operadores Lineares e Representação Matricial 

Objetivo: entender como "aplicar ações" sobre vetores. 

Temas: 
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• Matriz como operador 

• Composição de transformações 

• Inversibilidade 

• Operadores auto-adjuntos e unitários (começo do vocabulário quântico) 

4. Autovalores e Autovetores 

Objetivo: aprender a "descompor" operadores — base dos algoritmos quânticos. 

Temas: 

• Cálculo e interpretação geométrica de autovalores 

• Diagonalização 

• Aplicação a dinamização de sistemas 

• Teorema espectral para matrizes hermitianas 

Aplicação quântica: estados estáveis de um sistema são autovetores da Hamiltoniana, e os 

autovalores são as energias possíveis. 

Decomposições e Estruturas Avançadas 

Objetivo: construir ferramentas para simular e otimizar algoritmos. 

Temas: 

• Decomposição espectral (Spectral Theorem) 

• Decomposição de Schmidt e singular value decomposition (SVD) 

• Espaços tensoriais (produto tensorial) 

• Operadores de Pauli e álgebra de matrizes quânticas 

• Projeções, operadores densos e traço (para estados mistos) 

6. Aplicação direta em algoritmos quânticos 

Objetivo: traduzir o aprendizado em codificação e projeto de algoritmos. 

Temas: 
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• Simulação de Hamiltonianas como matrizes 

• Codificação de QUBOs em matrizes binárias simétricas 

• Portas quânticas como operadores unitários 

• Circuitos parametrizados (ansätze) com decomposição em portas 

Ferramentas recomendadas: 

• Qiskit (IBM) 

• PennyLane (Xanadu) 

• QuTiP (para simulação de operadores contínuos) 

• NumPy, SciPy, JAX para álgebra linear em CPU/GPU 

Agora vou dar-lhes algo que – para mim - é um deleite e uma oportunidade rara de ir fundo em 

matemática, física quântica, teoria da computação e codificação algorítmica — tudo em uma 

jornada cuidadosamente comentada, passo a passo, como se abríssemos uma partitura da 

mecânica computacional. 

Vamos criar um pequeno algoritmo quantum-inspired — isto é, um algoritmo clássico, mas 

baseado em princípios da computação quântica — para resolver uma instância simplificada de 

partição de números (Number Partitioning), um problema clássico NP-difícil. Faremos isso 

com uma heurística inspirada em superposição e interferência quântica, mas executada em 

CPU tradicional. 

Ao longo do código, pararemos a cada linha para discutir conceitos cruciais em álgebra linear, 

estrutura de Hamilton, e especialmente o espectro de complexidade P vs NP. 

Vamos começar com o código — e logo após cada linha, versaremos longamente sobre seu 

significado. 

import numpy as np 

from itertools import product 

Comentário técnico e conceitual: 

• numpy (abreviação de Numerical Python) é a principal biblioteca de álgebra linear em 

Python. Aqui começamos a trabalhar no domínio dos vetores e matrizes, os tijolos 

fundamentais da computação quântica. 



 
 

Dr. Marcos Elias Matemático, engenheiro, pesquisador e empreendedor Fundador do Ramanujan Institute, HoloSystems 

Quantum, Equiverse e Kiyosito Av. Brigadeiro Faria Lima, 2277 – 4º andar Jardim Paulistano – São Paulo – SP – CEP 01489-

901 Brasil 

www.ramanujan.institute | www.holosystemsquantum.com | www.equiverse.com.br | www.kiyosito.io 

35 
 

• A função product do módulo itertools nos permitirá gerar superposições simuladas 

de estados binários — algo que um circuito quântico faria com portas de Hadamard. Mas 

aqui, faremos isso classicamente. 

Essa é a primeira ponte do quantum-inspired: gerar “espaços de estado” exponenciais em 

estrutura — mas operá-los com inteligência combinatorial para evitar custo real exponencial. 

def energy(state, weights): 

    total = np.dot(state, weights) 

    return abs(total) 

Comentário matemático e físico: 

• Aqui, state é um vetor binário com entradas {−1, +1}, representando duas partições 

(dois subconjuntos). Isso remete diretamente ao modelo de Ising, em que cada spin pode 

apontar "para cima" (+1) ou "para baixo" (−1). 

• O produto escalar np.dot(state, weights) é a aplicação básica de produto interno, 

uma operação central em espaços vetoriais com estrutura inner product (produto interno). 

Em álgebra linear, isso define norma, distância e projeção. 

• O valor absoluto da soma é interpretado como a “energia” da configuração: quanto mais 

equilibrada a partição (isto é, mais próxima a soma de zero), menor a energia. Isso 

modela o estado fundamental da Hamiltoniana do sistema. 

def quantum_inspired_partition(weights): 

    n = len(weights) 

    best_state = None 

    min_energy = float('inf') 

Comentário sobre complexidade e teoria da computação: 

• O problema de particionar pesos em dois conjuntos com somas iguais é NP-difícil: não se 

conhece algoritmo polinomial que resolva todos os casos, e acredita-se que ele não exista. 

• Isto nos leva à clássica questão P vs NP: 
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o Classe P: problemas resolvíveis em tempo polinomial (tempo de execução cresce 

como n, n², etc.). 

o Classe NP: problemas cujas soluções podem ser verificadas em tempo 

polinomial. 

o Problemas NP-difíceis são, no sentido técnico, tão difíceis quanto os problemas 

mais difíceis em NP. Eles podem não estar em NP (por exemplo, problemas de 

otimização com soluções irracionais), mas todo problema em NP pode ser 

reduzido a eles em tempo polinomial. 

o Se algum problema NP-difícil for resolvível em tempo polinomial, então P = NP 

— o que alteraria profundamente a cripta, a lógica, e a ciência computacional em 

geral. 

• Neste trecho do código, min_energy será nosso substituto pragmático para o "estado 

fundamental" de uma Hamiltoniana clássica, que representaremos implicitamente. 

    for state in product([-1, 1], repeat=n): 

        e = energy(state, weights) 

        if e < min_energy: 

            min_energy = e 

            best_state = state 

Comentário avançado (superposição, interferência, busca): 

• A função product([-1, 1], repeat=n) gera todas as possíveis 2ⁿ configurações de 

spin (superposição binária). Isso simula o que um computador quântico faria de forma 

nativa com estados de qubits. 

• Em hardware quântico real, essa superposição é física, paralela e massivamente 

interferente: os caminhos computacionais se cancelam ou reforçam conforme a estrutura 

do problema. Aqui, simulamos isso explícita e exaustivamente, o que, embora 

instrutivo, tem custo exponencial — e por isso é adequado apenas para instâncias 

pequenas. 

• O teste if e < min_energy implementa uma busca por mínimo global, semelhante à 

busca do estado fundamental da Hamiltoniana que um algoritmo como VQE buscaria 

minimizar. 
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• Do ponto de vista da teoria de algoritmos, estamos realizando busca exaustiva — que 

está em O(2ⁿ) — característica da complexidade exponencial dos problemas NP-

difíceis. 

    return best_state, min_energy 

Comentário semântico: 

• A resposta retorna a configuração binária que melhor equilibra os subconjuntos (isto é, 

minimiza o total da soma ponderada). 

• Esse é o equivalente, no mundo da física quântica, a medir o estado final do sistema 

após evoluí-lo pela Hamiltoniana do problema. Em quantum annealing, esse mínimo 

seria atingido por tunelamento quântico e evolução adiabática. 

Demonstração: 

pesos = [3, 1, 4, 2, 2] 

estado, energia = quantum_inspired_partition(pesos) 

print(f"Melhor configuração: {estado}") 

print(f"Diferença mínima entre subconjuntos: {energia}") 

Conclusão filosófico-matemática: 

Embora este algoritmo não seja eficiente para n grande (por motivos de complexidade), ele é um 

microcosmo perfeito do que torna a computação quântica promissora: sua habilidade natural 

de operar sobre vetores complexos de alta dimensão, aplicando operadores lineares unitários 

(portas quânticas), evoluindo via Hamiltonianas e colapsando probabilisticamente para o estado 

mínimo. 

Mas em última instância, sem álgebra linear, nem a física quântica nem os algoritmos que 

dela se inspiram seriam operacionalizáveis. Toda a transformação de estados, toda medição, 

toda sobreposição é uma questão vetorial e linear. 

Agora que desenvolvemos um algoritmo quantum-inspired básico para partição de números e 

exploramos cada linha em profundidade, podemos elevar a complexidade do modelo.  
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A proposta agora é transformar aquele algoritmo exaustivo em um algoritmo variacional com 

inspiração quântica, similar ao VQE (Variational Quantum Eigensolver), mas 

implementado em CPU clássica. Vamos não apenas escrever o algoritmo, mas detalhar cada 

conceito subjacente — em álgebra linear, otimização, teoria de operadores e estruturas 

espectrais. 

O objetivo 

Queremos encontrar, para uma dada função energia E(x), o mínimo global. Como a função está 

definida sobre vetores binários, nosso espaço de busca é discreto. Mas vamos relaxar esse 

espaço para o contínuo — e isso abre caminho para técnicas inspiradas em métodos variacionais 

da mecânica quântica. 

A estratégia: algoritmo variacional 

Em vez de explorar explicitamente todas as combinações (o que custa tempo exponencial), 

construiremos um "estado quântico parametrizado" que simula uma superposição de 

possibilidades, e depois otimizaremos seus parâmetros clássicos usando gradientes para 

minimizar a energia esperada. 

Parte 1: Preparar o ansatz 

Um ansatz é uma aproximação estruturada, com parâmetros ajustáveis. No VQE real, ele é 

construído como um circuito com portas U(θ), e aqui representaremos um vetor de 

probabilidades (ou amplitudes) sobre cada estado binário. 

import numpy as np 

def initialize_ansatz(n, theta): 

    """Retorna uma distribuição de probabilidade suave com base em parâmetros contínuos.""" 

    amplitudes = np.array([np.prod(np.cos(theta[i]) if bit == 0 else np.sin(theta[i]) 

                         for i, bit in enumerate(format(k, f'0{n}b'))) 

                         for k in range(2**n)]) 
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    return amplitudes / np.linalg.norm(amplitudes) 

Explicação matemática (didática e detalhada): 

• Vetores estado: em mecânica quântica, o estado de n qubits é um vetor de dimensão 2ⁿ, 

com componentes complexos normados. Aqui construímos um vetor real (por 

simplicidade), onde cada componente é determinado por uma função das amplitudes 

cos(θᵢ), sin(θᵢ) — simulando a aplicação de portas rotacionais parametrizadas. 

• Ansatz e espaço vetorial: estamos definindo um vetor ψ(θ) ∈ ℝ²ⁿ. Esse espaço de 

vetores (com produto interno canônico) é um espaço de Hilbert real. 

• Normalização: garantimos que ‖ψ(θ)‖² = 1, o que imita a interpretação probabilística de 

estados quânticos. 

• A complexidade computacional dessa função é O(n × 2ⁿ) — exponencial no número de 

qubits. Mas o quantum-inspired trick é manter n pequeno e otimizar rapidamente. 

Parte 2: Definir a Hamiltoniana 

Nossa função energia será definida como um operador diagonal, porque o problema de partição 

é expressável assim: cada vetor base |x⟩ tem uma energia específica. 

def build_hamiltonian(weights): 

    n = len(weights) 

    energies = [] 

    for k in range(2**n): 

        bits = np.array([int(b) for b in format(k, f'0{n}b')]) 

        spins = 2 * bits - 1  # de {0,1} para {-1,+1} 

        energy = abs(np.dot(spins, weights)) 

        energies.append(energy) 

    return np.array(energies) 
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Explicação conceitual: 

• Aqui definimos H como um operador diagonal no espaço computacional: H = diag(ε₀, 

ε₁, ..., ε_{2ⁿ−1}), onde εₖ é a energia de cada estado binário possível. 

• Isso modela uma Hamiltoniana no representação computacional, onde a matriz é 

diagonal na base |x⟩. 
• Diagonalização e base preferida: na mecânica quântica, diagonalizar um operador 

significa encontrar uma base onde ele age multiplicativamente. Como estamos em uma 

base própria, a ação é apenas multiplicar o vetor estado componente a componente. 

Parte 3: Calcular energia esperada e minimizar 

Agora definimos a energia esperada (esperança de Hamiltoniana sobre o estado parametrizado), 

e aplicamos uma rotina clássica de otimização. 

def expected_energy(amplitudes, hamiltonian): 

    probabilities = amplitudes**2 

    return np.dot(probabilities, hamiltonian) 

Fundamentação matemática: 

• Essa é a fórmula central da mecânica quântica:   E(θ) = ⟨ψ(θ)| H |ψ(θ)⟩ = Σₖ |ψₖ(θ)|² 

× εₖ 

• É a esperança matemática de um operador diagonal sobre um vetor estado. 

• Complexidade computacional: O(2ⁿ), mas vetorial, simples, paralelizável e eficiente 

para pequenos n. 

Parte 4: Otimização clássica (variacional) 

Vamos usar um otimizador de descida de gradiente (simplificado) para ajustar os parâmetros θ 

de forma a minimizar a energia esperada. 

def optimize(weights, epochs=100, lr=0.1): 

    n = len(weights) 

    hamiltonian = build_hamiltonian(weights) 
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    theta = np.random.uniform(0, np.pi/2, size=n) 

 

    for epoch in range(epochs): 

        amplitudes = initialize_ansatz(n, theta) 

        energy = expected_energy(amplitudes, hamiltonian) 

 

        # Gradiente via diferença finita 

        grad = np.zeros_like(theta) 

        epsilon = 1e-6 

        for i in range(n): 

            shift = np.zeros_like(theta) 

            shift[i] = epsilon 

            amp_plus = initialize_ansatz(n, theta + shift) 

            amp_minus = initialize_ansatz(n, theta - shift) 

            e_plus = expected_energy(amp_plus, hamiltonian) 

            e_minus = expected_energy(amp_minus, hamiltonian) 

            grad[i] = (e_plus - e_minus) / (2 * epsilon) 

 

        theta -= lr * grad 

        print(f"Iteração {epoch}: energia = {energy:.5f}") 

 

    return theta, energy 

 

Explicações cruzadas (matemática, física, computação): 

• θ é o vetor de parâmetros do ansatz, similar aos parâmetros de rotação em portas Ry(θ) 

em um circuito quântico. 

• O algoritmo implementa uma descida de gradiente, buscando minimizar a função E(θ). 

O gradiente é calculado numericamente via diferença finita — uma técnica elementar, 

mas eficaz. 

• Isso é análogo ao VQE, que combina circuitos parametrizados com otimizadores 

clássicos. 

• A complexidade do loop é dominada por O(n × 2ⁿ), devido à simulação do ansatz. Mas 

em sistemas pequenos ou com restrições, isso é gerenciável — o mesmo espírito de 

heurística quantum-inspired. 
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Agora vamos dar um salto ousado: vamos projetar uma Hamiltoniana quântica para um 

sistema simples, e então usar uma rede neural como função de onda variacional, em um 

framework inspirado no Variational Monte Carlo (VMC). 

Prepare-se — vamos combinar: 

• física quântica (Hamiltonianas, estados fundamentais), 

• álgebra linear (operações vetoriais e espectrais), 

• estatística (amostragem de Monte Carlo), 

• aprendizado de máquina (redes neurais feedforward), 

• e teoria computacional (otimização numérica em espaços vetoriais complexos). 

Objetivo 

Nosso objetivo é, dado um sistema físico descrito por uma Hamiltoniana Ĥ, encontrar seu estado 

fundamental |ψ₀⟩, ou seja, o vetor unitário (normalizado) que minimiza a energia esperada do 

sistema: 

E = ⟨ψ| Ĥ |ψ⟩ 

A abordagem de Variational Monte Carlo (VMC) não exige conhecer todos os autovalores 

nem diagonalizar Ĥ. Em vez disso, propomos uma família de funções de onda ψₜ(x), 

parametrizadas por um vetor θ, e otimizamos θ de forma a minimizar a energia esperada por 

meio de amostragem estocástica: 

E[θ] = (Σₓ |ψₜ(x)|² × E_loc(x)) / (Σₓ |ψₜ(x)|²) 

Nessa equação, o termo E_loc(x) — chamado de energia local — é definido como: 

E_loc(x) = (Σₓ′ H(x, x′) × ψₜ(x′)) / ψₜ(x) 

Essa estrutura nos permite estimar o valor esperado da energia mesmo quando a Hamiltoniana 

não é diagonal, desde que saibamos calcular os elementos não nulos H(x, x′). 

Passo 1: Projetar a Hamiltoniana (modelo de Ising com 

campo transversal) 
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Selecionamos como modelo a Hamiltoniana de Ising unidimensional com condições de contorno 

periódicas e campo magnético transversal: 

Ĥ = −J × Σᵢ σ_z(i) × σ_z(i+1) − h × Σᵢ σ_x(i) 

Onde: 

• σ_z(i) é o operador de Pauli Z atuando no sítio i (mede spin ao longo do eixo z), 

• σ_x(i) é o operador de Pauli X (flipa o spin em i), 

• J é o acoplamento entre spins vizinhos, 

• h é a intensidade do campo magnético na direção transversal (eixo x). 

Note que: 

• O primeiro termo da Hamiltoniana é diagonal na base computacional (|x⟩), pois σ_z × 

σ_z retorna valores +1 ou −1. 

• O segundo termo é não-diagonal: σ_x atua mudando (flipando) o estado de um qubit 

individual. 

Esse modelo é simples o suficiente para construir, mas complexo o bastante para exigir coerência 

quântica (interferência) na função de onda. 

Passo 2: Escolher a função de onda (rede neural variacional) 

Propomos uma função de onda parametrizada na forma: 

ψₜ(x) = exp(fₜ(x)) 

Em que fₜ(x) é uma rede neural escalar (por exemplo, uma MLP com uma camada oculta), que 

mapeia uma configuração binária de spins em ℝ⁺ via exponenciação. Isso garante: 

• Positividade de ψ (necessária para amostragem), 

• Interpolabilidade (a função fₜ(x) pode aprender padrões arbitrários nas configurações de 

spin), 

• Diferenciabilidade (ótimo para descida de gradiente via backpropagation). 

Implementação (PyTorch) 
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Começamos importando bibliotecas: 

import numpy as np 

import torch 

import torch.nn as nn 

import torch.optim as optim 

 

Rede Neural: função de onda 
 
class PsiNet(nn.Module): 

    def __init__(self, n, hidden_dim=16): 

        super().__init__() 

        self.net = nn.Sequential( 

            nn.Linear(n, hidden_dim), 

            nn.Tanh(), 

            nn.Linear(hidden_dim, 1) 

        ) 

    def forward(self, x): 

        return torch.exp(self.net(x).squeeze()) 

•  Entrada x: vetor de spins com valores {−1, +1}, representando uma configuração binária. 

•  Saída: escalar positivo ψ(x), interpretado como amplitude da função de onda. 

•  A tangente hiperbólica introduz não linearidades suaves e simetria central (útil para modelar 

inversões de spin). 

Cálculo da Energia Local 

def local_energy(psi_model, x, J=1.0, h=1.0): 

    E = 0.0 

    # Termo de interação diagonal: -J × s_i × s_{i+1} 

    for i in range(len(x)): 
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        E += -J * x[i] * x[(i+1)%len(x)] 

    # Termo de flip não-diagonal: -h × (ψ(x') / ψ(x)) 

    for i in range(len(x)): 

        x_flipped = x.clone() 

        x_flipped[i] *= -1 

        ratio = psi_model(x_flipped.unsqueeze(0)) / psi_model(x.unsqueeze(0)) 

        E += -h * ratio.item() 

    return E 

Explicação: 

• O termo diagonal computa diretamente σ_z × σ_z. 

• O termo não-diagonal implementa σ_x: inverte um spin, calcula ψ(x′)/ψ(x), e soma sua 

contribuição. Isso corresponde ao elemento de matriz ⟨x|σ_x|x′⟩. 

Amostragem de configurações (Monte Carlo) 

def sample_spin_configs(n, N_samples): 

    configs = [] 

    for _ in range(N_samples): 

        spins = np.random.choice([-1, 1], size=n) 

        configs.append(spins) 

    return torch.tensor(configs).float() 

As amostras seguem uma distribuição uniforme em {−1, +1}ⁿ. Essa é uma estimativa bruta; 
versões mais sofisticadas usam amostragem ponderada, como Metropolis-Hastings. 
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Loop de otimização VMC 

def train_vmc(n=8, samples=200, epochs=100, lr=1e-2): 

    model = PsiNet(n) 

    optimizer = optim.Adam(model.parameters(), lr=lr) 

 

    for epoch in range(epochs): 

        configs = sample_spin_configs(n, samples) 

        energies = [local_energy(model, x) for x in configs] 

        amplitudes = model(configs) 

        probs = amplitudes**2 

        probs /= probs.sum() 

 

        E_exp = sum(e*p.item() for e,p in zip(energies, probs)) 

        loss = torch.tensor(E_exp, requires_grad=True) 

        optimizer.zero_grad() 

        loss.backward() 

        optimizer.step() 

        print(f"Iteração {epoch}: energia esperada = {E_exp:.6f}") 

O que está acontecendo aqui: 
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1. Geramos configs, amostras do espaço de spin. 

2. Para cada x em configs: 

o Calculamos E_loc(x). 

o Calculamos ψₜ(x) via a rede. 

3. Derivamos a distribuição de probabilidade: 

p(x) = |ψₜ(x)|² / Σ_x′ |ψₜ(x′)|² 

4. Calculamos a energia esperada: 

E[θ] ≈ Σ_x p(x) × E_loc(x) 

5. Realizamos backpropagation sobre E[θ] — isto é, minimizamos a energia esperada via 

otimização estocástica de θ. 

Reflexão Final — A elegância de VMC 

A grande sacada do Variational Monte Carlo é que ele evita dois dos principais gargalos da 

computação quântica: 

• Não precisamos da matriz completa de Ĥ — só dos elementos não-nulos (locais). 

• Não precisamos armazenar vetores de dimensão 2ⁿ explicitamente — usamos 

aproximações via redes neurais e amostragem. 

Além disso, VMC nos dá um espaço de busca muito mais rico do que aproximações lineares: 

podemos explorar funções de onda não triviais, modelar coerência, e incorporar simetrias. 

O custo computacional total depende de: 

• O número de amostras por época (linear), 

• O custo de forward pass na rede (linear em número de parâmetros), 

• O número de épocas (definido empiricamente pela convergência). 

CONCLUSÃO: 

Ao longo deste curso, nossa proposta foi construir não apenas uma linha conceitual sólida sobre 

computação quântica e otimização, mas, sobretudo, uma arquitetura intelectual capaz de integrar 
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álgebra linear avançada, fundamentos da mecânica quântica, teoria da complexidade, linguagens 

da física matemática e técnicas modernas de aprendizado de máquina, em torno de um eixo 

comum: o uso de Hamiltonianas como descrição formal da estrutura de problemas 

computacionais. 

Partimos da motivação histórica de William Rowan Hamilton no século XIX — cuja genialidade 

consistiu não apenas em formular um novo método de cálculo, mas em inaugurar um novo 

paradigma: a ideia de que energia, não forças, deveria ser a linguagem estrutural da dinâmica de 

sistemas complexos. Esse ponto de partida nos permitiu mapear a transição conceitual da 

mecânica clássica para a mecânica quântica: a promoção da função Hamiltoniana a operador 

sobre espaços vetoriais complexos, e sua centralidade na equação de Schrödinger, na teoria de 

operadores, e, por fim, na computação quântica moderna. 

Exploramos como a retomada dessa ideia — muitas vezes por diferentes cientistas de forma 

independente, como Schrödinger, Heisenberg, Dirac e Jordan — foi a resposta conceitual 

necessária diante da falência preditiva da física clássica no regime atômico. Em todos esses 

caminhos, vimos que o uso de operadores hermitianos, autovalores, estruturas de comutadores e 

parênteses de Poisson foram naturalmente herdados do formalismo hamiltoniano e 

reconfigurados na linguagem dos estados quânticos em espaços de Hilbert. 

Essa herança nos conduziu a um olhar muito preciso sobre o papel da álgebra linear. Deixou de 

ser um recurso matemático auxiliar para se tornar a própria moldura da computação quântica e 

de seus algoritmos — do controle de portas unitárias aos simuladores de Hamiltonianas, da 

estrutura matricial de observáveis às decomposições espectrais necessárias para algoritmos 

variacionais e quantificação de entropia. Essa constatação exigiu que discutíssemos com 

profundidade todas as noções fundamentais da disciplina: espaços vetoriais complexos, 

operadores lineares e autoadjuntos, teoremas espectrais, decomposições em operadores de Pauli, 

produtos tensoriais e até princípios de otimização sobre subespaços parametrizados. 

Ao longo das discussões mais práticas, migramos de problemas canônicos de otimização — 

como a partição de números — para suas modelagens como problemas binários quadráticos 

(QUBO) e, posteriormente, para sua expressão como Hamiltonianas discretas. Com isso, 

construímos uma ponte natural entre problemas NP-difíceis, sistemas físicos interativos (como o 

modelo de Ising) e algoritmos heurísticos inspirados em estruturas quânticas, mesmo 

implementados em hardware clássico. 

Nesse sentido, propusemos e dissecamos um algoritmo quantum-inspired completo, linha a 

linha, com comentários matemáticos meticulosos. Mostramos como é possível simular o 
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comportamento de superposição e interferência via somatórios combinatórios, como a função de 

energia pode ser formalizada via produto interno e como o conceito de estado fundamental, tão 

presente na física, pode ser reinterpretado como uma solução ótima de problemas combinatórios 

sob o ponto de vista computacional. Esse estudo permitiu contextualizar, com precisão, a 

diferença entre problemas pertencentes às classes P e NP, o que é uma redução polinomial, e 

quais problemas são considerados NP-difíceis. 

Partindo dessa base, demos um passo além: reestruturamos o algoritmo original em um modelo 

variacional de inspiração quântica, onde trocamos a busca exaustiva por parametrizações 

contínuas e diferenciáveis sobre funções de onda. Mostramos como construir um ansatz — uma 

aproximação funcional — capaz de simular um circuito quântico parametrizado, e como calcular 

a energia esperada via integrais discretizadas sobre distribuições de probabilidade induzidas. 

Isso nos levou naturalmente à abordagem do VQE (Variational Quantum Eigensolver) e seu 

equivalente clássico: o método de Monte Carlo Variacional (VMC). E foi nessa transição que 

incorporamos estruturas modernas de aprendizado de máquina, especialmente redes neurais 

paramétricas, como função de onda. Exploramos com precisão como a arquitetura MLP 

(perceptron multicamada) pode ser vista como uma função suave sobre o espaço de spins, e 

como ela pode ser calibrada, via descida de gradiente, para se aproximar do estado fundamental 

de uma Hamiltoniana não-diagonal — sem nunca precisar conhecer a matriz completa de Ĥ. A 

isso chamamos de otimização baseada em amostragem local — onde apenas o quociente entre 

amplitudes é necessário, e não a função de onda como um todo. 

O método VMC revelou, assim, a beleza do compromisso computacional moderno: quando não 

podemos operar diretamente sobre as estruturas completas (como vetores em ℂ²ⁿ ou matrizes 2ⁿ 

× 2ⁿ), projetamos aproximações espertezas — circuitos parametrizados, heurísticas 

probabilísticas, redes neurais não-lineares — que capturam características fundamentais do 

espaço de solução com custo muito inferior. 

Encerramos esse percurso com reflexões cruciais: que o progresso em algoritmos quânticos e 

quantum-inspired dependerá não apenas de avanços em hardware, mas da nossa capacidade de 

modelar, abstrair e compreender profundamente as estruturas matemáticas que tornam possível a 

representação, compressão e manipulação inteligente de estados e operadores. E esse 

entendimento passa invariavelmente por domínio técnico em álgebra linear, teoria espectral, 

análise funcional, fundamentos de mecânica quântica e estruturas probabilísticas — somado a 

uma intuição madura sobre otimização, estrutura combinatória e teoria da complexidade. 
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Este curso não foi apenas sobre algoritmos: foi sobre o modo como diferentes disciplinas 

matemáticas se entrelaçam para resolver problemas que antes pareciam intratáveis. Foi sobre 

como o formalismo de Hamilton deixou de ser apenas um método histórico da física clássica e se 

transformou na gramática universal dos sistemas físicos computacionais. E foi, sobretudo, sobre 

como o pensamento matemático e computacional podem, juntos, redescrever o espaço das 

possibilidades algorítmicas — inclusive aquelas que ainda não existem, mas que já 

compreendemos, em sua forma estrutural, por meio da linguagem da energia. 

Esse nosso curso não como uma compilação de técnicas, mas como uma cartografia 
conceitual e operacional para futuros exploradores da fronteira entre matemática, física e 
computação. E se há uma última mensagem, ela é esta: os sistemas quânticos não 
apenas executam algoritmos — eles são algoritmos. E compreender sua estrutura é, ao 
mesmo tempo, compreender os limites e as possibilidades da computação no século XXI. 

GLOSSÁRIO TÉCNICO DETALHADO: 

Aqui está um glossário técnico detalhado, abrangendo os principais termos, conceitos e 

operadores que exploramos ao longo do curso "Da Energia aos Algoritmos". A proposta é 

servir como uma referência precisa e rigorosa — voltada a pesquisadores e alunos de pós-

graduação com maturidade matemática e computacional. 

Hamiltoniana (Hamiltonian) Função que representa a energia total de um sistema físico, 

geralmente expressa como a soma das energias cinética e potencial. No formalismo quântico, 

torna-se um operador hermitiano que rege a evolução do estado do sistema via a equação de 

Schrödinger. É o objeto central de otimização em algoritmos variacionais quânticos. 

Estado Fundamental (Ground State) Estado de energia mínima de um sistema físico descrito 

por uma Hamiltoniana. Representa a solução ótima em problemas de otimização modelados por 

métodos quantum-inspired. 

Espaço de Hilbert Espaço vetorial complexo com produto interno definido, completo em 

norma. É o palco onde vivem os estados quânticos (vetores de estado), operadores hermitianos e 

evoluções unitárias. 

Produto Interno (Inner Product) Operação que associa a dois vetores um número escalar 

complexo. Em ℂⁿ, definido por ⟨ψ, φ⟩ = Σᵢ ψᵢ* φᵢ. Permite definir ortogonalidade, comprimento e 

projeção. 
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Operador Hermitiano Operador linear auto-adjunto, ou seja, A = A†. Possui autovalores reais e 

autovetores ortogonais. Representa observáveis físicos e Hamiltonianas. 

Autovalores e Autovetores Dados um operador A, um escalar λ e vetor v ≠ 0, temos A v = λ v. 

Os autovalores (λ) representam quantidades físicas mensuráveis; os autovetores (v) representam 

os estados correspondentes. 

Diagonalização Processo de representar um operador em uma base onde ele atua 

multiplicativamente. Fundamental para entender dinâmicas quânticas e para decomposição 

espectral de Hamiltonianas. 

Comutador Dado dois operadores A e B, o comutador é definido como [A, B] = AB − BA. 

Mede o grau de não-comutatividade entre operações. Na mecânica quântica, está diretamente 

ligado ao princípio da incerteza. 

Operadores de Pauli Trio de matrizes fundamentais: 

• σₓ = [[0, 1], [1, 0]] 

• σ_y = [[0, −i], [i, 0]] 

• σ_z = [[1, 0], [0, −1]] São operadores hermitianos que geram o grupo SU(2), base para 

manipulação de qubits e construção de Hamiltonianas. 

Produto Tensorial Operação que combina dois espaços vetoriais em um novo de dimensão 

produto. Permite a construção de estados compostos (como vários qubits). A ⊗ B representa a 

ação simultânea de operadores sobre subsistemas independentes. 

Qubit Unidade básica de informação quântica. Estado quântico de duas dimensões representado 

como: |ψ⟩ = α|0⟩ + β|1⟩, com |α|² + |β|² = 1 É o análogo quântico do bit clássico, com 

propriedades de superposição e interferência. 

Superposição Princípio segundo o qual um estado quântico pode existir simultaneamente como 

combinação linear de múltiplos estados base. 

Tunelamento Quântico Fenômeno onde um sistema quântico transita entre estados separados 

por barreiras de energia, mesmo que classicamente proibido. Em algoritmos de quantum 

annealing, permite escapar de mínimos locais. 
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Teorema Adiabático Quântico Afirma que se a evolução de uma Hamiltoniana for lenta o 

suficiente, o sistema permanece no estado fundamental durante toda a evolução. Base para 

quantum annealing e algoritmos variacionais. 

Modelo de Ising Modelo de spins clássicos ou quânticos com interações locais, normalmente 

expressos como: H = −J Σ σ_z(i) σ_z(i+1) − h Σ σ_x(i) Utilizado para representar otimização 

combinatória, transições de fase e simulações quânticas. 

QUBO (Quadratic Unconstrained Binary Optimization) Modelo de otimização definido 

como: min xᵀ Q x, com x ∈ {0,1}ⁿ Usado para representar problemas NP-difíceis, como partição 

de números, MaxCut, e colorização de grafos. 

VQE (Variational Quantum Eigensolver) Algoritmo híbrido (quântico e clássico) que busca o 

estado fundamental de uma Hamiltoniana parametrizando uma função de onda e otimizando sua 

energia esperada com otimizadores clássicos. 

VMC (Variational Monte Carlo) Versão clássica do VQE. Usa uma função de onda 

parametrizada (ex: rede neural), calcula a energia local por amostragem e otimiza os parâmetros 

via descida de gradiente. 

Ansatz Suposição funcional — geralmente uma função de onda parametrizada — usada como 

aproximação controlada em métodos variacionais. Pode ser um circuito quântico ou uma rede 

neural. 

Rede Neural Variacional Rede neural usada como função de onda para representar estados 

quânticos em algoritmos VMC. Mapeia uma entrada binária (como uma configuração de spins) 

para uma amplitude escalar. 

Energia Local Dada uma configuração x, é o valor esperado da Hamiltoniana sobre x, 

considerando contribuições vizinhas: E_loc(x) = Σₓ′ H(x, x′) ψ(x′) / ψ(x) É estimada ponto a 

ponto durante VMC. 

Esperança de Energia (Energy Expectation) Valor médio da energia sobre a distribuição 

|\ψ(x)|²: E[θ] = Σ_x p(x) × E_loc(x), com p(x) = |\ψ(x)|² / normalização 

Amostragem de Monte Carlo Técnica para estimar integrais ou esperanças matemáticas via 

amostragem aleatória. No VMC, usada para evitar a enumeração completa do espaço de estados 

(exponencial). 
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Simulated Annealing Algoritmo de otimização inspirado no processo físico de resfriamento 

térmico. Evita mínimos locais aceitando, com certa probabilidade, soluções piores no início. 

Quantum Annealing Versão quântica do annealing. Usa evolução adiabática de uma 

Hamiltoniana, com efeitos de tunelamento, para encontrar o estado fundamental do problema. 

Classe P Conjunto dos problemas solucionáveis em tempo polinomial determinístico. 

Classe NP Problemas cuja solução pode ser verificada em tempo polinomial. 

Problemas NP-Difíceis (NP-Hard) Problemas tão difíceis quanto os mais difíceis de NP. Se 

qualquer um deles tiver uma solução em P, então P = NP. 

Problemas NP-Completos Problemas que estão em NP e são NP-difíceis. Reduções entre eles 

são essenciais na análise de complexidade. 

Descida de Gradiente (Gradient Descent) Método de otimização contínua que ajusta 

parâmetros na direção do gradiente negativo da função de custo. 

Retropropagação (Backpropagation) Algoritmo para computar o gradiente de uma função de 

custo em redes neurais, aplicando a regra da cadeia sobre composições de funções. 

Otimizador (Optimizer) Algoritmo que ajusta os parâmetros de um modelo para minimizar 

uma função de custo. Exemplos: SGD, Adam, RMSProp. 

Espaço de Fase (Phase Space) Espaço definido por coordenadas generalizadas (posição) e seus 

momentos conjugados. Estrutura simplética do formalismo hamiltoniano. 

Transformada de Legendre Transforma funções L(q, q̇) em H(q, p), trocando variáveis para 

obter equações de Hamilton a partir da Lagrangiana. 

Parênteses de Poisson Definido como {f, g} = Σ (∂f/∂qᵢ ∂g/∂pᵢ − ∂f/∂pᵢ ∂g/∂qᵢ). Fundamentais na 

mecânica clássica e predecessores dos comutadores na mecânica quântica. 

Norma Euclidiana Medida do “tamanho” de um vetor: ||x|| = √(Σ xᵢ²). Fundamental para 

normalização de estados. 
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Operador Unitário Operador linear que preserva norma: U† U = I. Representa transformações 

reversíveis em estados quânticos (como portas lógicas quânticas). 

BIBLIOGRAFIA COMENTADA: 

Abaixo está uma bibliografia comentada e ordenada que percorre o espectro completo 
daquilo que discutimos neste curso: de clássicos fundacionais a artigos seminais 
contemporâneos. Essa lista foi construída com o espírito da nossa jornada — transversal, 
técnica e historicamente consciente — abrangendo matemática, física, computação e 
ciência da informação quântica. Organizei em cinco blocos cronológicos e temáticos, da 
física clássica à computação quântica e algoritmos variacionais. 

1. Fundamentos da Mecânica Clássica e Formalismo Hamiltoniano 

William Rowan Hamilton 

• On a General Method in Dynamics (1834) 

o Artigo original onde Hamilton introduz o formalismo que leva seu nome. 

Essencial para compreender o nascimento da dinâmica canônica. 

Goldstein, H., Poole, C. & Safko, J. 

• Classical Mechanics (3ª ed., Pearson) 

o Referência clássica sobre o formalismo lagrangiano e hamiltoniano. Contém uma 

apresentação rigorosa das equações de Hamilton, estrutura de fase e 

transformadas canônicas. 

Arnold, V.I. 

• Mathematical Methods of Classical Mechanics (Springer, Graduate Texts in 

Mathematics) 

o Obra matemática profundamente geométrica. Introduz a estrutura simplética dos 

espaços de fase e conecta a teoria de Hamilton às ideias modernas de geometria 

diferencial. 

2. Do Formalismo Hamiltoniano à Mecânica Quântica 
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Dirac, P. A. M. 

• The Principles of Quantum Mechanics (Oxford University Press) 

o Obra fundacional que estabelece a linguagem dos operadores, espaços de Hilbert 

e comutadores. Integra diretamente a álgebra de Poisson com estruturas quânticas. 

Landau, L. & Lifshitz, E. 

• Quantum Mechanics: Non-relativistic Theory (Vol. 3, Course of Theoretical Physics) 

o Um clássico russo. Clareza formal impressionante e excelentes desenvolvimentos 

matemáticos dos postulados da mecânica quântica. 

Sakurai, J. J. & Napolitano, J. 

• Modern Quantum Mechanics (Cambridge University Press) 

o Leitura indispensável para alunos de pós-graduação. Apresenta a formulação de 

Schrödinger e Heisenberg com profundidade técnica. 

Schrödinger, E. 

• Quantisierung als Eigenwertproblem (1926) 

o Série de artigos onde Schrödinger apresenta a mecânica ondulatória e sua 

equação. Disponível em inglês como "Quantization as an Eigenvalue Problem". 

3. Álgebra Linear e Estrutura Matemática da Computação Quântica 

Axler, S. 

• Linear Algebra Done Right (Springer) 

o Uma abordagem moderna e conceitual. Dá ênfase a operadores e autovalores sem 

depender de matrizes desde o início. 

Trefethen, L. N. & Bau, D. 

• Numerical Linear Algebra (SIAM) 

o Essencial para implementação eficiente de algoritmos e simulações. 

Nielsen, M. & Chuang, I. 
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• Quantum Computation and Quantum Information (Cambridge University Press) 

o A “bíblia” da computação quântica. Formalismo completo, incluindo algoritmos, 

circuitos, teoria de complexidade e fundamentos de informação quântica. 

Preskill, J. 

• Lecture Notes on Quantum Computation (Caltech, 1998) 

o Notas altamente influentes e gratuitas online. Cobrem QFT, complexidade, 

algoritmos variacionais e mais. 

4. Computação Quântica, Otimização e Variational Algorithms 

Farhi, E., Goldstone, J., & Gutmann, S. 

• A Quantum Approximate Optimization Algorithm (arXiv:1411.4028) 

o Paper fundador do QAOA, propondo o uso de Hamiltonianas como objetos 

centrais na otimização aproximada com qubits. 

Peruzzo, A. et al. 

• A variational eigenvalue solver on a quantum processor (Nature Communications, 2014) 

o Artigo que introduz o VQE, marco nos algoritmos híbridos para encontrar 

autovalores de Hamiltonianas em sistemas reais. 

Carleo, G. & Troyer, M. 

• Solving the quantum many-body problem with artificial neural networks (Science, 2017) 

o Primeiro uso bem-sucedido de redes neurais (Restricted Boltzmann Machines) 

como funções de onda. Fundação dos métodos VMC baseados em aprendizado 

profundo. 

McClean, J.R. et al. 

• The theory of variational hybrid quantum-classical algorithms (New Journal of Physics, 

2016) 

o Uma análise detalhada e formal dos algoritmos híbridos. Estabelece bases para 

teoria de expressividade, barren plateaus e eficiência. 
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Cerezo, M. et al. 

• Variational Quantum Algorithms (Nature Reviews Physics, 2021) 

o Revisão de estado da arte sobre VQE, QAOA, seus desafios e perspectivas. 

Leitura panorâmica fundamental para pesquisadores. 

5. Teoria da Complexidade, NP-Dificuldade e Reduções 

Papadimitriou, C. 

• Computational Complexity (Addison-Wesley) 

o Tratado abrangente sobre classes P, NP, reduções, completude e estruturas 

hierárquicas. Obra de referência em teoria da computação. 

Garey, M. R. & Johnson, D. S. 

• Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. 

Freeman) 

o Clássico absoluto. Apresenta as principais reduções conhecidas, fundamentos de 

complexidade e a noção de problemas NP-difíceis. 

Arora, S. & Barak, B. 

• Computational Complexity: A Modern Approach (Cambridge University Press) 

o Obra moderna e rigorosa. Traz linguagem atual, probabilística e interativa da 

complexidade computacional. 

 


